
Chris Brown, January 2008
Proofs of bounds on the “hop” algorithm for searching worms.
Note: Two pages prove # hops for a worm of lenght l is Ω(

√
(l)) and O(l2/3).

1. Consider a worm of length l.

2. Note than in an infinite grid, the number of squares at distance d > 0
from a given square is 4d.

3. Consider a traversal of a worm made by the “hop” algorithm in searching
for a square not actully in the worm. If n is the longest hop in a traversal
and H the number of hops, we have that

H ≤
n∑

d=1

4d = 4
(

n(n + 1)
2

)
= 2n2 + 2n,

because you can’t have more hops of length d than there are squares at
distance d from the target (x, y), and there are exactly 4d squares at
distance d from (x, y). Similarly, the worm body length satisfies

l ≥
n∑

d=1

4d · d = 4
n∑

d=1

d2 = Θ(n3), 1 i.e. l = Ω(n3).

4. Theorem: In an H-hop traversal, the longest hop, n, satisfies

n ≥
⌈
−1 +

√
1 + 2H

2

⌉
.

Proof: From the above, we know that H ≤ 2n2 +2, which we can rewrite
as n2 + n−H/2 ≥ 0. Of course we’re only interested in positive values of
n, and by the quadratic formula the only positive root of n2 + n−H/2 is
−1+

√
1+2H

2 and therefore n ≥ −1+
√

1+2H
2 . Finaly, since n is an integer, we

get n ≥
⌈
−1+

√
1+2H

2

⌉
.

5. Combining the two previous results, l = Ω(n3) and
⌈
(−1 +

√
1 + 2H)/2

⌉
we get

l = Ω

((
−1 +

√
1 + 2H

2

)3
)

= Ω
(
H3/2

)
.

6. Thus, by the def. of Ω, for some constant a > 0, when H is large we have

l ≥ aH3/2 which means (1/a)2/3
l2/3 ≥ H which means H = O

(
l2/3
)

.

1See page 1060 of the textbook.

1



Consider a worm that is wrapped around cell (x, y), so that it spirals away. We
should describe this a bit precisely. Let a d-square be the square of cells (i, j)
formed by the rows j = x + d and j = x − d, and the columns i = x + d and
i = x−d. The worm starts at cell (x, y−1) and moves counter-clockwise around
the 1-square until it uses up all the cells in the 1-square. Then it crosses into
the 2-square and moves counter-clockwise around the 2-square until it uses up
all those squares. We’ll call this a “spiral worm”.

Theorem: The “hop” algorithm makes Θ(
√

n) hops in traversing the spiral
worm around the point (x, y) it is searching for.

Proof: First note that a d-square consists of 8d cells. This may take a bit of
thinking to convince yourself of. Next note the distance of any cell in a d-square
from (x, y) is between d and 2d.

Consider your last hop from a cell in a d square. The hop length is at most 2d.
Since that is less than the 8d cells that make up the (d + 1)-square you move
into, you end your hop in the (d + 1)-square (as opposed to moving all the way
around and out of it during that singel hop). So, if you land in a d-square, you
will eventually land in a (d + 1)-square. Since our first hop lands in a 1-square,
induction tells us that we land in every d-square the worm fills up.

So we have at least one landing in every d-square filled up by the worm, and
clearly no more than 8, since each jump has length at least d and there are only
8d cells in the d-square. If the worm fills up the d-squares fromm d = 1..k. Then
the number of hops, H, satisfies

k ≤ H ≤ 8k + 7, 2

i.e. H = Θ(k).. Meanwhile, the worm body has length l, where

l =
k∑

d=1

8d + spillover = 4k(k + 1) + spillover

which means k = Θ(
√

l). We have H = Θ(k) and k = Θ(
√

l), so H = Θ(
√

l).

Since we proved the number of hops is Θ(
√

l) for a particular worm configura-
tion, i.e. the spiral, the worst case can’t be better and we get that the “hop”
algorithm is Ω(

√
(n).

2The +7 is because the worm might fill some, though not all, of the (k + 1)-square.

2


