

Computer Science Department
SI495 Research Project Report

Fall 2003

YP-TDS: A TACTICAL DATA SIMULATOR
FOR USNA YARD PATROL CRAFT

by

Midshipman Jeffrey P. Wilcox, 047374

United States Naval Academy

Annapolis, MD

Certification of Faculty Mentor's Approval

Assistant Professor David J. Stahl, Jr.
Department of Computer Science

Department Chair Endorsement

Professor Kay Schulze
Chair, Department of Computer Science

i

ABSTRACT

YP-TDS is an inexpensive, commercial-off-the-shelf hardware and software system
providing a tactical display similar to the Navy Tactical Data System, for potential use
aboard Naval Academy Yard Patrol craft. Actual own-ship position received via GPS as
well as simulated contact data generated according to a combat simulation scenario is
displayed in real time, allowing the YP-TDS system to be used for midshipman afloat
training. YP-TDS represents embracing the Network Centric Warfare concept within the
Naval Academy professional education environment.

Keywords: NTDS, Network Centric Warfare, ForceNet

 ii

TABLE OF CONTENTS

ABSTRACT ... i

TABLE OF CONTENTS .. ii

LIST OF FIGURES .. iii

1. BACKGROUND ... 1

2. APPROACH .. 3

2.1 YP-TDS requirements .. 4

2.2 Architecture and functional components ... 9

2.3 Design decisions .. 12

3. IMPLEMENTATION ... 13

3.1 User interface ... 13

3.2 Simulation control .. 16

3.2.1 Multi-threaded client-server architecture .. 17

3.2.2 Own-ship position from GPS .. 19

3.3 Nautical display ... 21

3.4 Tactical display .. 23

3.5 Network input/output ... 25

3.6 Scenario simulation .. 27

4. Results and Lessons Learned ... 28

5. Future work ... 29

6. References ... 32

 iii

LIST OF FIGURES

Figure 1. YPG class vessel simulated by the YP-TDS system. .. 4

Figure 2. NTDS-like data entry and display terminals. .. 4

Figure 3. YP-TDS terminals distributed throughout the YP... 5

Figure 4. Sensors and weapons simulated by the YP-TDS system. 6

Figure 5. YP elevation view for maintaining Damage Control status. 7

Figure 6. Nautical display of actual (own-ship) and simulated contact positions. 8

Figure 7. Client-server architecture. ... 9

Figure 8. YP-TDS Server.. 10

Figure 9. YP-TDS Client. ... 10

Figure 10. Drop-down menu with transparency. .. 14

Figure 11. A "menu" rendered with a bitmap that is not a color gradient. 14

Figure 12. Push buttons and non-clickable buttons appearing in a menu......................... 16

Figure 13. Main program loop. ... 17

Figure 14. Multi-threaded implementation. .. 18

Figure 15. Example NMEA GPS strings. ... 19

Figure 16. NMEA GPGGA string. ... 20

Figure 17. A BSB chart is sampled at 2240 x 1200 resolution... 21

Figure 18. Image processing removes unwanted features. ... 21

Figure 19. Deep water, shallow water, lowlands, and highlands are labeled. 22

Figure 20. 2x scaling is applied and pixels are interpolated. .. 22

Figure 21. Bearing line and range circles. .. 25

Figure 22. DC status board showing various casualties. .. 27

Figure 23. Suggested scenario configuration file format.. 31

1

1. BACKGROUND

For almost a decade, the guiding vision shaping the transformation of our nation's

military for the 21st century has been that of information superiority and dispersed,

networked force capability [1]. Such a concept is best described as Network Centric

Warfare (NCW):

An information superiority-enabled concept of operations that generates

increased combat power by networking sensors, decision makers, and

shooters to achieve shared awareness, increased speed of command,

higher tempo of operations, greater lethality, increased survivability, and a

degree of self-synchronization. In essence, NCW translates information

superiority into combat power by effectively linking knowledgeable

entities in the battlespace.[2]

ForceNet describes the evolutionary transformation that brings NCW theory to practice

within the US Navy:

The operational construct and architectural framework for naval warfare in

the information age that integrates warriors, sensors, networks, command

and control, platforms, and weapons into a networked, distributed combat

force that is scalable across all levels of conflict from seabed to space and

sea to land. ForceNet implements the theory of network-centric warfare.

[3]

Because the Naval Academy is primarily an educational institution, NCW is addressed

pedagogically as a classroom topic. In practice, there are no elements of a ForceNet at

USNA. Hands-on training in basic navigation, seamanship, and damage control is

conducted using Yard Patrol craft (YP), yet with the exception of formation steaming and

an occasional simulation of underway replenishment, YP's seldom interact with each

 2

other. Each YP conducts isolated training operations, essentially independent of other

units operating in proximity. Most notably absent is any degree of exposure to afloat

operations in the context of a tactical battle situation. While recognizing that YP are not

designed nor configured for this purpose, and that the best quality hands-on training can

only be accomplished aboard commissioned warships at sea, we claim that YP can and

should be used to provide a midshipman's first exposure to elements of NCW.

 This research project endeavors to validate that concept. Specifically, the goal is

to produce a system using commercial-off-the-shelf hardware and custom software that

can be fielded afloat aboard YP, capable of simulating sensors, platforms and weapons, in

real-time. Such a system has the potential to supplement or facilitate existing Professional

Development education and training in every year group: from 4/C Damage Control, to

3/C Navigation, through 2/C Tactics and the leadership experiences gained in 1/C

summer cruise.

 3

2. APPROACH

Network Centric Warfare, and its practical implementation within the US Navy as

Force Net, achieve combat effectiveness through information superiority. Decision-

makers can respond more quickly, bringing assets to bear more effectively, through the

rapid dissemination of information between linked battlespace entities. The description of

ForceNet as the integration of "warriors, sensors, networks, command and control,

platforms and weapons [2]" aptly summarizes the approach of this research project.

Using commercial-of-the-shelf hardware and custom designed software, we attempt to

integrate real midshipmen and real sensors with simulated weapons, sensors and ships by

means of a command-and-control tactical display. With appearance and functionality

much like the actual Navy Tactical Data System (NTDS), but intended for use in the

context of professional education and training aboard USNA YP craft, the system is

named YP-TDS: YP Tactical Data System.

 In their current configuration the YP provide a platform for afloat training in such

areas as seamanship, shiphandling, communications and navigation, and to a limited

extent, command-and-control situations such as voyage planning and formation

maneuvering and steaming. We wish to augment this configuration to facilitate training

in both damage control and command and control decision making during simulated

tactical battle scenarios. Several components are required to achieve this: (1) multiple

data entry and display terminals, and (2) scenario simulation software1. In effect, the

software will simulate a fictional Aegis-equivalent guided missile YP ("YPG", Figure 1),

with capabilities far beyond those of an actual YP, in both weapons and sensors.

1 A well-defined protocol for conducting training is additionally required, but this is beyond the intended
scope of the current research project.

 4

Figure 1. YPG class vessel simulated by the YP-TDS system.

2.1. YP-TDS requirements

An NTDS-like system aboard a YP would require inter-communicating data entry and

color display terminals as depicted in Figure 2. Midshipman crew would interact with the

system by means of mouse and menu driven software, using such system functionality as

sensor selection, contact classification, weapons launch, and display of damage control

(DC) status.

Figure 2. NTDS-like data entry and display terminals.

YPTDS YPTDS YPTDS

Network
Interface

 5

Figure 3. YP-TDS terminals distributed throughout the YP.

In practice, terminals located in various parts of the ship could be assigned

different functions, for example, a CIC terminal controlling sensor use and simulated

weapons launch, a Galley terminal acting as the DC Central status board, and a terminal

in the Pilot House or Bridge maintaining the broad tactical picture (Figure 3). Each of

these three functions will be described in general terms below.

Midshipman in the CIC of their Aegis-equivalent YPG would control a host of

simulated sensors and weapons that emulate the functions of their real world

counterparts, such as fire control and search radars, hull-mounted sonars, torpedoes,

missiles and deck guns, and defensive systems such as CIWS, flares and chaff (Figure 4).

YPTDS

YPTDS

YPTDS

 6

Figure 4. Sensors and weapons simulated by the YP-TDS system.

 MK-16 CIWS Mk-75 Otto Melara

 MK41 Vertical Launch System (SM-2, Harpoon, TASM)

 SPY-1D Phased-Array Radar SQS53C Hull-mounted Sonar

 7

Figure 5. YP elevation view for maintaining Damage Control status.

 DC Central - perhaps located in the Galley - would maintain the current damage

and damage control status of major ship systems and compartments. Simulated damage

incurred by a simulated weapon (missile, shell, torpedo, mine, etc.) would appear on an

elevation view of the YP, displaying the ship as a series of equipment or compartment

zones, similar to Figure 5. One possible use for this capability would be in conducting

DC training drills. Supervised by a drill monitor, damage control parties could be

deployed to the scene of a casualty to combat the casualty and communicate status with

DC Central. Fire, flooding, and equipment damage could be annotated according to

reports received from the scene.

 8

Figure 6. Nautical display of actual (own-ship) and simulated contact positions.

 The tactical display monitored and maintained at a third station could be repeated

at all other stations. An example of such a display appears in Figure 6. With the

exception of own-ship, each symbol represents a simulated contact as detected by

simulated sensors, plotted on a representation of the local YP operating area. GPS could

be used to accurately display own-ship position.

Providing the capabilities described above for each of the three functional stations

would involve a number of issues, including (1) choice of networking hardware and

communication protocol, (2) design and implementation of a user-interface, (3) digital

chart representation, (4) generation of own-ship and contact position, and (5) registration

of actual own-ship position with the digital chart. Each of these areas will be further

discussed.

 9

2.2. Architecture and functional components

An implementation of the above capabilities would best be accomplished by breaking

functionality into the following series of subsystems:

1. User interface

2. Simulation control

3. Tactical display

4. Nautical display

5. Network Input/Output

6. Scenario Simulation

Because the system is composed of networked terminals, a client-server software

architecture is suggested. Block diagrams depicting a client-server arrangement, the

breakdown by functional subsystem, and a set of associated data flows are illustrated in

Figures 7-9. A brief description of each subsystem follows.

Figure 7. Client-server architecture.

YPTDS
YPTDS

 10

Figure 8. YP-TDS Server.

Figure 9. YP-TDS Client.

 11

User Interface The user-interface design should allow the user to access

functionality via menus, keyboard and mouse, and to pan and

zoom through the simulated NTDS display. Individual menus

should be provided to incorporate logically separate functionality

such as damage control status display and update, weapons and

countermeasure selection, and system configuration settings.

Interface actions such as contact selection, the ability to determine

bearing and range from the tactical display, and accessing contact

information should also be provided.

Simulation Control This subsystem would form the heart of the YP-TDS software.

Simulated tracks of weapons in flight, aircraft, submarines,

neutral vessels, etc., would be generated here, as well as own-

ship actual position as obtained from a GPS unit. It must

communicate with the Nautical and Tactical Display subsystems

to produce a dynamically changing NTDS display. The terminal

acting as server would broadcast contact position to all other

terminals on the network. Terminals acting as clients will receive

this data, then pass it along to the Tactical Display subsystem.

Tactical Display This subsystem should display own-ship position, and contact

position generated by Simulation Control (if a contact is within

own-ship's radar coverage) using standard NTDS symbology for

surface, air, subsurface, friendly, threat, etc, contacts. In addition,

the contact name, ID number, classification, speed, bearing,

position and other data, should be made available by this

subsystem.

Nautical Display This subsystem presents a digital chart on which the Tactical

Display is super-imposed. Internal chart representation should

 12

allow for zooming and panning. Additional features such as a

latitude and longitude grid overlay may be provided.

Network Input/Output This subsystem is responsible for sending and receiving the

contact data, damage control status data, and simulation

control data between the server terminal and multiple client

terminals.

Scenario Simulation This subsystem will initialize the simulation control

subsystem with all simulated contacts. It should allow

contacts to be randomly generated or read from a scenario

specification file2.

2.3. Design decisions

 PC’s running Windows XP will be used as the display terminals. Software will

written in C and C++, and developed within the Microsoft Visual C++ 6.0 (MSVC++)

environment. Third party libraries will be used to implement the color display,

networking control, GPS interfacing, and multi-tasking.

Windows XP was chosen as it is the ubiquitous operating system in use, most

often found preloaded on systems purchased today. C/C++ and MSVC++ were chosen

because of existing experience programming in those languages. To network YP-TDS

terminals, TCP/IP over ethernet was chosen because of it’s proven ability to reliably

transmit data fast, as well as the large amount of documentation available. For graphics,

the Allegro freeware libraries were chosen due to several years of programming

experience with them, as well as their ability to handle two-dimensional primitives

(circles, lines, rectangles, etc.) quickly and efficiently. The GPS unit chosen is an external

Holux GM-210 GPS receiver, selected because of its ability to connect to a serial port, as

well as its use of the NMEA0183 (National Maritime Electronics Association) standard

protocol. A serial port interface was desired because of the abundance of documentation

available on the internet on serial interfaces, and because of existing experience with

building parallel port interfaces, which are very similar. A GPS device utilizing an

2 The current implementation does not include the ability to read a simulation scenario from a file.

 13

NMEA0183 protocol was desired because of the ease of decoding an NMEA string, and

the abundance of freely available documentation.

3. IMPLEMENTATION

 Details of the YP-TDS implementation are provided in the following sections, and

is presented according to functional subsystem.

3.1. User interface

 Graphics are displayed at a resolution of 1024 x 768, in either 16-bit or 32-bit

color. The custom graphic user interface (GUI) makes heavy use of two functions:

Make_Menu, and Make_Button. They provide an easy way to quickly add and

remove menus, menu options and functionality, and offer the advantage of

customizability. The two functions are described below.

int Make_Window(int X1, int Y1, int size_x, int size_y,

 char *title,

 int win_type, int win_color, int win_trans)

This function allocates memory for and renders a color gradient within a region of pixels

determined by size_x and size_y, producing a rectangular bitmap to be used as a

menu. The base color of the menu is determined by win_color, and its label, given by

the string title, is drawn at the top left. The menu itself is drawn at position (X1,Y1)

relative to the parent window upper left corner, using transparency determined by

win_trans (0..255, 0 being opaque). The function returns an index into a windows

array, so that images or buttons - both implemented as a type of window - may be

rendered to the menu. There are three types of menus, determined by the win_type

parameter:

0 – Toolbar Appears at the top of the main program window.

1 – Status Contact Profile and Mini-map

2 – Console Damage control and Network Settings

 14

Note that menus are rendered using transparency to keep the tactical display visible even

when menus are dropped down, as shown in Figure 10.

Figure 10. Drop-down menu with transparency.

Using the index returned from Make_Window, a menu can have an alternate bitmap

loaded over it. In Figure 11, the Network Settings diagram is used instead of a color

gradient to form the "background".

Figure 11. A "menu" rendered with a bitmap that is not a color gradient.

 15

int Make_Button(int X1, int Y1, int size_x, int size_y,

 char *title,

 int button_type, int parent,

 int *toggle, int command)

Make_Button is very similar to Make_Window in how it allocates memory for its

bitmap. Like Make_Window, it returns its own array element index. The

Make_Button function not only handles buttons with the standard push in/out

behavior, but gauges and indicators as well. For example, the button labeled OFF at the

bottom right of the menu in Figure 11 is created and rendered using the same method as

buttons that can be pushed, however it is not "clickable". Parameters to this function are:

• X1 and Y1, its position within its host window

• parent, the host windows array index

• command, a value the button will write to a global variable used by the

Simulation Control subsystem

• toggle, a pointer to a two-state variable whose value is to be watched. When

the variable changes state, the button automatically toggles its appearance. This

feature is useful for linking buttons together.

• button_type, controls behavior according to:

0 – Normal clickable button

1 – Transparent unclickable button

2 – On/Off indicator

3 – Numeric value indicator

4 – Damage Control Zone

5 – Text dialogue box

 16

Figure 12. Push buttons and non-clickable buttons appearing in a menu.

3.2. Simulation control

 This portion of the YP-TDS software contains the main program loop, shown in

Figure 13. It is an endless loop - processing user input, updating contact tracks, and

rendering the screen image - until the user chooses to exit the program. The main loop

begins by reading mouse clicks and keystrokes and translating them into Commands.

These are handled by a case structure which to perform the associated task. This system

is flexible in that additional functionality is easy to incorporate.

 When in Server mode, the track data of simulated contacts will be modified as

needed according to the scenario. For example, simulated aircraft will fly at an

appropriate speed, fishing vessels may turn spontaneously to avoid shallow waters, etc.

While in Client mode, the system will skip this step entirely, and rely solely on the Server

to update its track data.

 17

Figure 13. Main program loop.

In turn, code implementing the Nautical Display writes the digitized chart image

to a temporary buffer (Temp), Contact Display code will overlay NTDS symbols on the

chart, and Draw Windows code will render windows, menus, and buttons. Finally, before

the end of the main loop is reached, the temporary buffer is copied to the screen and

displayed to the user.

3.2.1. Multi-threaded Client-server architecture

The YP-TDS system consists of multiple PC hosts sharing the same contact data.

Within a host, YP-TDS software is implemented as a collection of threads, each handling

a specific function, and each able to access - and possibly update - the global simulation

state. To manage this shared access, a Windows implementation of POSIX pthreads [4]

is used. Between hosts, TCP/IP sockets are used to handle communication. Both are

described below. The relationship between threads is represented in Figure 14.

 18

Figure 14. Multi-threaded implementation.

Depending on the role the PC plays in the YP-TDS network, it may be one of up

to three clients, or the single server. The server is always designated the CIC terminal.

When the server is first established, it will activate a thread called Listen_thread,

the job of which is to detect potential clients attempting to connect via a TCP/IP stream

socket. Upon connection, a unique socket is established for the client, a thread named

clt_recv is created, and the mode assumed by the client (Galley, Bigscreen or Bridge)

is returned.

clt_recv (on the server) is responsible for all communication with a client

until the network connection is broken. Listen_thread (on the server) remains active

to watch for additional connections, and will only close when the CIC terminal

disconnects itself as the server. On the client side, upon connection to a server a single

thread called Client_thread is created to communicate directly with its

corresponding clt_recv thread on the server. It is through these two functions that the

simulation state variable (explained below) is passed.

Within either client or server, race conditions are possible if two threads attempt

simultaneous access to the same data. To arbitrate access to shared data a mutual

 19

exclusion lock mutex is employed. A thread wishing to obtain access to shared data must

first obtain the lock. Once a lock is obtained, other threads attempting access will sleep

until the lock becomes available. As a specific example, the GPS_thread must update

own-ship longitude and latitude, while the main program thread may be simultaneously

trying to read them. A mutex must be used to prevent the main thread from reading a

position value in an intermediate state of update.

3.2.2. Own-ship position from GPS

In addition to the Listen_thread, the server will also create a thread to

handle own-ship position updates. A GPS_thread monitors a Holux Company Global

Positioning System (GPS) receiver to obtain own ship position, course and speed. The

GPS unit is connected through a serial port transmitting data at 4800 baud. The data is

conveniently in the form of ASCII strings in NMEA0183 Marine Interface Standard

format, illustrated in Figure 15.

$GPGSA,A,1,08,29,28,,,,,,,,,,17.7,14.6,10.0*0A
$GPRMC,205032.880,A,3858.9382,N,07628.9307,W,0.00,116.91,091103,,*13
$GPGGA,205033.880,3858.9383,N,07628.9320,W,1,03,14.6,-23.6,M,,,,0000*34
$GPGSA,A,1,08,29,28,,,,,,,,,,17.7,14.6,10.0*0A
$GPGSV,3,1,10,27,71,212,,08,59,299,45,31,51,047,,11,48,142,*71
$GPGSV,3,2,10,28,29,295,46,03,15,054,,02,11,100,,29,09,316,39*7D
$GPGSV,3,3,10,07,09,238,,13,06,202,*7B
$GPRMC,205033.880,A,3858.9383,N,07628.9320,W,0.00,116.91,091103,,*16
$GPGGA,205034.880,3858.9382,N,07628.9316,W,1,03,14.6,-23.6,M,,,,0000*37
$GPGSA,A,1,08,29,28,,,,,,,,,,17.7,14.6,10.0*0A

Figure 15. Example NMEA GPS strings.

The Holux GPS receiver provides several types of strings, but the YP-TDS system has

use for only the GPGGA and GPRMC strings, and within these strings, uses only the

latitude, longitude, course and speed [5]. An example GPGGA string, providing latitude

and longitude, is shown Figure 16.

 20

Figure 16. NMEA GPGGA string.

Extracting information from an NMEA string is accomplished with the following code:

// if string starts with GPGGA
if (!memcmp (Data+nIndex, "$GPGGA",6)) {
 // break string into commas and spaces separated words
 Tokenize(Data+nIndex, token);

 // lat and long references for the area displayed by YP-TDS
 llMaxY=39003900; llMinY=38968400;
 llMaxX=76489100; llMinX=76417200;

 // read and convert lat and long into a usable format
 YY = (((token[1][0]-'0')*10+(token[1][1]-'0'))*1000000 +
 ((((token[1][2]-'0')*10+(token[1][3]-'0'))*100)/60.0)*10000 +
 ((token[1][5]-'0')*10+(token[1][6]-'0'))*100 +
 ((token[1][7]-'0')*10+(token[1][8]-'0')));

 XX = (((token[3][1]-'0')*10+(token[3][2]-'0'))*1000000 +
 ((((token[3][3]-'0')*10+(token[3][4]-'0'))*100)/60.0)*10000 +
 ((token[3][6]-'0')*10+(token[3][6]-'0'))*100 +
 ((token[3][8]-'0')*10+(token[3][9]-'0')));

 // convert own ship’s lat and long to display bitmap coordinates
 pthread_mutex_lock(&mutex);
 Universal.x[selfship] =
 3584 - (((float)(XX-llMinX)/(float)(llMaxX-llMinX))*3584);
 Universal.y[selfship] =
 1920 - (((float)(YY-llMinY)/(float)(llMaxY-llMinY))*1920);
 pthread_mutex_unlock(&mutex);
}

// if string starts with GPRMC
if (!memcmp (Data+nIndex, "$GPRMC",6)) {
 pthread_mutex_lock(&mutex);
 Tokenize(Data+nIndex,token);

 // set speed of own ship according to the GPS
 Universal.Course[selfship] =
 ((token[8][0]-'0')*100+(token[8][1]-'0')*10+(token[8][2]-'0'));
 Universal.Speed[selfship] =
 ((token[7][0]-'0'));
 pthread_mutex_unlock(&mutex);
}

$GPGGA,205034.880,3858.9382,N,07628.9316,W,1,03,14.6,-23.6,M,,,,0000*37

 UTC time Latitude N/S Longitude E/W GPS fix quality

 21

3.3. Nautical Display

 The function of the Nautical display is to draw the background ocean and terrain

on which the Tactical Display will overlay NTDS symbols. The background image is a

composite of 35 images loaded from files in 32-bit, 640 x 480 color PCX format, derived

from digital nautical charts in BSB format [6]. BSB is a compressed raster format used

for distributing nautical charts by various organizations in North America, including the

National Oceanographic and Atmospheric Administration (NOAA). The pre-processing

involved with chart data conversion is accomplished in the steps depicted in

Figures 17-20:

Figure 17. A BSB chart is sampled at 2240 x 1200 resolution.

Figure 18. Image processing removes unwanted features.

 22

Figure 19. Deep water, shallow water, lowlands, and highlands are labeled.

 Depth gradients are approximated by shades of blue, while land is

 textured using an arbitrary bitmap.

Figure 20. 2x scaling is applied and pixels are interpolated.

 The chart is partitioned into 35 tiles and stored on

 disk in PCX format.

PCX file format was chosen because of its fast decompression speed, moderate

compression ratio and lossless compression. All files are loaded into memory upon

starting the program. When the YP-TDS view is interactively panned or zoomed by the

user, the Nautical Display draws only those images that are within the selected view,

greatly speeding up the rendering process.

 23

3.4. Tactical Display

 NTDS symbols are overlayed on the nautical chart using the following approach.

At every cycle of the display loop, a back buffer is loaded with the digitized chart by the

Nautical Display subsystem. All additional drawing - for example, contact position

symbols, drop-down menus, etc. is rendered into (and overwriting portions of) this buffer.

The back buffer is finally copied to the screen (or front) buffer, which is then displayed.

This provides seamless animation free of flickering, screen tearing and various other

video artifacts produced by non-buffered systems.

 Twenty-one different NTDS symbols used by the YP-TDS display are shown in

Table 1, and are constructed from the following primitives:

circle (Temp, X, Y, R, C);

Draw a circle at (X,Y) with radius R and color C

 arc (Temp, X, Y, Rad1, Rad2, R, C);

Draw an arc from angle Rad1 to angle Rad2 with radius R and color C.

 rect (Temp, X1, Y1, X2, Y2, C);

Draw a rectangle from corner (X1,Y1) to corner (X2,Y2) with color C.

line (Temp, X1, Y1, X2, Y2, C);

Draw a line from (X1,Y1) to (X2,Y2) with color C.

Surface Aircraft SubSurf Land Base Torpedo Missile Helo
OwnShip N/A N/A N/A N/A N/A N/A
Friendly

Enemy
Neutral N/A N/A N/A

Unknown N/A N/A N/A

Table 1

 24

 Associated with each contact is a set of variables for storing latitude, longitude,

course, and speed. Latitude and longitude are converted to a screen position at which a

symbol is plotted. A contact's course determines the direction of the velocity leader, the

line emerging from the center of each NTDS symbol, and its speed determines the

leader's length. In addition, each track is assigned a Track Number, which can be toggled

on or off using an the Allegro graphics API [7] function textout_centre, as follows

textout_centre (temp, font, text, X, Y, C);

Writes text centered at (X,Y), in font font, and color C.

To depict radar range, weapon range, and bearing lines, the following two functions are

used:

 do_line (temp, X1,Y1, X2,Y2, C, pixel_fx);

 do_circle (temp, X1,Y1, R,C, pixel_fx);

In both cases, the function pixel_fx is passed as a parameter as an alternative to

simply plotting the pixel. Instead, the pixel is randomly displaced, creating a "fuzzy"

effect. Figures 2 illustrates the bearing lines and range circles that can be displayed.

 25

Figure 21. Bearing line and range circles.

3.5. Network Input/Output

 The role of this subsystem is two-fold: if the PC on which it is running is

designated as the server, it will transmit a one kilobyte structure containing data on the

tracked contacts (latitude, longitude, altitude, course, speed, damage control information,

etc.). In its current implementation the YP-TDS system can track no more than forty

contacts.

 26

The state variable is a struct, defined below:

struct state

{

 float x[40]; // Longitude

 float y[40]; // Latitude

 int z[40]; // Altitude

 int Course[40]; // Contact’s course

 float Speed[40]; // Contact's speed

 int Team[40]; // Represents enemy, friend, or neutral

 int Symbol[40]; // Symbol used to represent contact

 int Class[40]; // Contact's true class

 int Identified[40]; // Flag to determine if contact is unknown

 int visible[40]; // Set to true if a contact is in sight

 int radar_range[40]; // ship’s radar halo

 int Total_Damage[40]; // Greatest of fire/structural/flooding damage

 char DCDamage[6]; // between six different stations

 char DC_FFS[6]; // 0-none 1-class A 2-class B 3-class C

 char StructDamage; // Total structural damage

 char NetFire; // Total fire damage

 char NetFlood; // Total flood damage

 char CrewKilled; // Total crew sent to the galley

 int gps; // Boolean flag

 int connected; // who is connecting

};

If a PC is connected as a client, it will not send the state variable, but will instead

receive it. When the state is received, the client will send back the three byte string

“YPG” to signal that the state was received. The server will not attempt to send another

state to that client until it has received the reply. If the client is designated as the galley

PC, than it has the option of sending a three byte string “DCX”, where "DC" signifies the

string is carrying damage control information encode in "X" in the following manner:

X = (ZoneToFix) + 6 * FixCommand

 27

where ZoneToFix is an integer from 0 to 5 representing one of the six zones that can be

damaged. FixCommand specifies that the galley is extinguishing a fire (0), or stopping

flooding (1). Figure 22 shows the YP-TDS DC status board display with the ship having

suffered various casualties.

Figure 22. DC status board showing various casualties.

3.6. Scenario Simulation

 This subsystem’s purpose is to load and initialize the training scenario with both

preset and pseudo-random data. The preset data can be specific ships and aircraft

loitering at a specific location, with specific names and performing specific activities.

The pseudo-random data functions by randomly generating contacts based on preset

location traits (air traffic corridors, shipping lanes, etc.) This facet of the Scenario

Simulation guarantees that every training simulation will be slightly different.

 For now, the locations of all contacts are hard-coded and cannot be changed

externally. No new platforms can be added, and no starting positions, names, bearings,

 28

etc. can be altered. However, future versions will feature fully configurable platforms,

missions, and scenarios specified in an ASCII text configuration file.

4. Results and Lessons Learned

YP-TDS is a system that provides YP craft with a tactical display and the means to

simulate combat, damage control, and command and control in a CIC environment. The

YP-TDS system is a set of three to four PCs networked together to form a local area

network. Each PC functions as an access point into the YP-TDS system, where users can

manipulate the system. From CIC a Midshipman user can launch weapons, turn on and

off sensors and keep track of damage control. From the bridge, a Midshipman Officer of

the Deck can maintain awareness of the tactical picture and the damage control status of

his ship. From the galley, a neutral referee can enter or monitor simulated damage to the

ship, and upon receiving reports that that damage has been repaired, can update the

system. A ship can be virtually sunk by simulated attacks. The ship’s position is

accurately displayed on each of the PCs using the Global Positioning System.

The largest hurdles in designing such a project is not only removing bugs, and ridding

the system of unforeseen shortcomings, but also optimizing code for speed, reliability and

providing the user with an easy to use interface. This is a daunting task when

simultaneously adding modules and constantly updating functional subsystems. The

solution to the difficulties was to program the YP-TDS system in sections. For example,

the Nautical system was written as a separate program, as was the GPS system. Only

after both were thoroughly debugged and tested were they added to the actual YP-TDS

program. Other hurdles dealt with limitations of the computer software to communicate

to the GPS hardware, or different computers transmitting and receiving data across the

network at different speeds. The solutions to these problems were implemented as

temporary fixes, or simple workarounds. In other cases, limitations could not be

immediately resolved. Because of the way the Nautical charts are loaded, and because

their format must undergo a lengthy preprocessing before it can be used, only one area

can be shown. This limitation’s only solution is to use a better chart format, one that does

not require as much preprocessing.

 29

Other limitations include a fixed number of tracks the YP-TDS system can handle at

once, at present forty, including own-ship. In the future, this number will be dynamic,

and automatically adjusted to allow as many contacts as is limited by the server

computer’s memory and processing speed. Although the YP-TDS system was first

designed to be used in 32-bit color mode, speed issues dictated that a 16-bit color mode

be used. In the future this will become an option so that users with faster computers may

select the 32-bit option. The system also lacks some basic user friendly functions such as

a right-click menu so that a user can quickly update information about a track, or gather

information about it.

The deficiencies and limitations of the YP-TDS system pale in comparison to the

features it provides. Future versions of this system will address these limitations as well

as add ever more functionality to support the goal of embracing the Network Centric

Warfare concept within the Naval Academy training curriculum.

5. Future work

Although the YP-TDS system delivers superb performance there is still room for

improvement. The groundwork is laid for the expansion of this system from deployment

aboard a single YP to use on several YP, with communications via a wireless network.

Existing HF Frequency Shift Keying (FSK) capable radios already installed on the YP

could be used to allow every YP to electronically report its position as well as other

simulation data to all other YP in a wide area network. One possible approach is to use a

PSK31 data transmission algorithm to prove the concept can work, and then will work to

improve the speed and reliability of the wireless network.

Among its current limitations is the inability of the Nautical Display to display other

than the Santee Basin locale. This limitation is intentional, as use of the raster-based BSB

charts used by the Nautical Display was intended solely to prove the YP-TDS system is

feasible. They are eventually to be replaced with a Vector Product Format (VPF) chart.

VPF allows for greater accuracy and much better control of what chart features to display

(e.g., it would be easier to filter in or out such data as navigational aids, gridlines, and

depth sounding numbers). Currently, the charts must be pre-processed before use, but

 30

future upgrades might feature charts displayed on the fly, perhaps using the OpenGL

graphics API.

The is no artificial intelligence (AI) driving the simulated contacts as of yet. Aircraft

and ships simply move along their pre-set bearing at a fixed speed. Weapons do not

realistically track their target., and do not impact their target. Future work will allow all

contacts to behave in a realistic fashion, including computer controlled hostile contacts

that will attempt to meet their own mission criteria, including but not limited to

destroying a YPG battle group.

Currently there is no way to change the Mission Scenario. The position, bearing and

other traits of all platforms, as well as battle group composition and weapons load out are

fixed. Future versions will allow for a script-like configuration language to be used to

custom tailor the scenario to meet a multitude of training needs. Figures 23 depicts an

example set of scenario configuration scripts.

Since this simulation will eventually take place aboard a YP, it would improve

realism if the environment better seemed like a combat environment. To do this, the CIC

laptop might be patched into the 1MC of the YP, giving the ability to play various sound

effects over the ships announcing system - for example, the sound of a Close In

Weapons System firing, a missile flyover or launch, a deck gun firing with the sound of a

shell casing clattering on the deck. All of these sound effects would be provided with as

much authenticity as possible, and a sound effects library has been in stages of assembly

since before this semester.

 31

Figure 23. Suggested scenario configuration file format.

Example Load Out file: SensorCG.txt

sensor
{
 Name = SPY-1D
 Surface = true
 SRange = 700
 Air = true
 ARange = 1100
 FC = true
 FRange = 1100
 Sonar = false
 PRange = 1100
 Location = 1
}

Example Load Out file: Load_FFG.txt

weapon
{
 76mm_AA = 200
 76mm_AP = 150
 CWIS = inf
 Harpoon = 4
 SM-1 = 20
}

Example Load Out file: Load_CG.txt

weapon
{
 5inch_AA = 200
 5inch_AP = 150
 CWIS = inf
 ASROC = 4
 TASM = 0
 TLAM = 8
 SM-2 = 12
}

Example Weapons file: Weapons.txt

magazine
{
 Name = HARPOON
 Range = 800
 Speed = 250
 Warhead = 2000
 Jam = false
 Sensor = radar
}

Example Weapons file: Mission1.txt

YPG
{
 YP = 1
 Team =1
 Designate = 1001
 Lat = 38.58.00
 Long = 76.24.00
 Bearing = 180.0
 loadout = Load_CG.txt
}

YPG
{
 YP = 2
 Team =1
 Designate = 1002
 Lat = 38.42.10
 Long = 76.22.80
 Bearing = 170.0
 loadout = Load_CG.txt
}

YPG
{
 YP = 1
 Team =2
 Designate = 1001
 Lat = 38.68.00
 Long = 76.99.80
 Bearing = 180.0
 loadout = Load_CG.txt
}

Neutral
{
 Identified = true
 Type = Surface
 Lat = 38.54.00
 Long = 76.20.00
 Bearing = 40.0
 Speed = 10
}

Neutral
{
 Identified = false
 Type = Air
 Lat = 38.72.00
 Long = 70.14.00
 Bearing = 175.0
 Speed = 120
}

 32

6. References

[1] Chairman of the Joint Chiefs. 1996. Joint Vision 2010, Joint Chiefs of Staff,
Washington, D.C.

[2] Network Centric Warfare: Developing and Leveraging Information Superiority, 2nd
Edition (Revised), David S. Alberts, John J. Gartska, Frederick P. Stein, CCRP, August
1999.

[3] ForceNet: Turning Information into Power, VADM Richard W. Mayo, USN, VADM
John Nathman, USN, US Naval Institute Proceedings, February 2003.

[4] POSIX: Threads Library for Win32, John E. Bossom, 1998

http://sources.redhat.com/pthreads-win32/

[5] Add GPS Support to Your Desktop: A. Riazi, 2003

http://www.codeproject.com/system/gps_support.asp

[6] BSB Reader: Frank Warmerdam, July 17th, 2002

warmerdam@pobox.com

[7] Allegro: Free-ware Graphics Libraries, By Shawn Hargreaves, 18 October 1998

http://alleg.sourceforge.net/

