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ABSTRACT 

YP-TDS is an inexpensive, commercial-off-the-shelf hardware and software system 
providing a tactical display similar to the Navy Tactical Data System, for potential use 
aboard Naval Academy Yard Patrol craft. Actual own-ship position received via GPS as 
well as simulated contact data generated according to a combat simulation scenario is 
displayed in real time, allowing the YP-TDS system to be used for midshipman afloat 
training. YP-TDS represents embracing the Network Centric Warfare concept within the 
Naval Academy professional education environment. 
 
Keywords: NTDS, Network Centric Warfare, ForceNet  
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1. BACKGROUND 

 

For almost a decade, the guiding vision shaping the transformation of our nation's 

military for the 21st century has been that of information superiority and dispersed, 

networked force capability [1]. Such a concept is best described as Network Centric 

Warfare (NCW): 

 

An information superiority-enabled concept of operations that generates 

increased combat power by networking sensors, decision makers, and 

shooters to achieve shared awareness, increased speed of command, 

higher tempo of operations, greater lethality, increased survivability, and a 

degree of self-synchronization. In essence, NCW translates information 

superiority into combat power by effectively linking knowledgeable 

entities in the battlespace.[2] 

 

ForceNet describes the evolutionary transformation that brings NCW theory to practice 

within the US Navy: 

 

The operational construct and architectural framework for naval warfare in 

the information age that integrates warriors, sensors, networks, command 

and control, platforms, and weapons into a networked, distributed combat 

force that is scalable across all levels of conflict from seabed to space and 

sea to land. ForceNet implements the theory of network-centric warfare. 

[3] 

 

Because the Naval Academy is primarily an educational institution, NCW is addressed  

pedagogically as a classroom topic.  In practice, there are no elements of a ForceNet at 

USNA. Hands-on training in basic navigation, seamanship, and damage control is 

conducted using Yard Patrol craft (YP), yet with the exception of formation steaming and 

an occasional simulation of underway replenishment, YP's seldom interact with each 
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other. Each YP conducts isolated training operations, essentially independent of other 

units operating in proximity. Most notably absent is any degree of exposure to afloat 

operations in the context of a tactical battle situation. While recognizing that YP are not 

designed nor configured for this purpose, and that the best quality hands-on training can 

only be accomplished aboard commissioned warships at sea, we claim that YP can and 

should be used to provide a midshipman's first exposure to elements of NCW. 

 This research project endeavors to validate that concept. Specifically, the goal is 

to produce a system using commercial-off-the-shelf hardware and custom software that 

can be fielded afloat aboard YP, capable of simulating sensors, platforms and weapons, in 

real-time. Such a system has the potential to supplement or facilitate existing Professional 

Development education and training in every year group: from 4/C Damage Control, to 

3/C Navigation, through 2/C Tactics and the leadership experiences gained in 1/C 

summer cruise. 
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2. APPROACH  

 

Network Centric Warfare, and its practical implementation within the US Navy as 

Force Net, achieve combat effectiveness through information superiority. Decision-

makers can respond more quickly, bringing assets to bear more effectively, through the 

rapid dissemination of information between linked battlespace entities. The description of 

ForceNet as the integration of "warriors, sensors, networks, command and control, 

platforms and weapons [2]" aptly summarizes the approach of this research project. 

Using commercial-of-the-shelf hardware and custom designed software, we attempt to 

integrate real midshipmen and real sensors with simulated weapons, sensors and ships by 

means of a command-and-control tactical display. With appearance and functionality 

much like the actual Navy Tactical Data System (NTDS), but intended for use in the 

context of professional education and training aboard USNA YP craft, the system is 

named YP-TDS: YP Tactical Data System. 

 In their current configuration the YP provide a platform for afloat training in such 

areas as seamanship, shiphandling, communications and navigation, and to a limited 

extent, command-and-control situations such as voyage planning and formation 

maneuvering and steaming. We wish to augment this configuration to facilitate training 

in both damage control and command and control decision making during simulated 

tactical battle scenarios. Several components are required to achieve this: (1) multiple 

data entry and display terminals, and (2) scenario simulation software1. In effect, the 

software will simulate a fictional Aegis-equivalent guided missile YP ("YPG", Figure 1), 

with capabilities far beyond those of an actual YP, in both weapons and sensors. 

                                                           
1 A well-defined protocol for conducting training is additionally required, but this is beyond the intended 
scope of the current research project. 
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Figure 1. YPG class vessel simulated by the YP-TDS system. 

 

2.1. YP-TDS requirements 

 

An NTDS-like system aboard a YP would require inter-communicating data entry and 

color display terminals as depicted in Figure 2. Midshipman crew would interact with the 

system by means of mouse and menu driven software, using such system functionality as 

sensor selection, contact classification, weapons launch, and display of damage control 

(DC) status. 

 

Figure 2. NTDS-like data entry and display terminals. 

 

YPTDS YPTDS YPTDS 

Network 
Interface 



 5 

 

Figure 3. YP-TDS terminals distributed throughout the YP. 

 

In practice, terminals located in various parts of the ship could be assigned 

different functions, for example, a CIC terminal controlling sensor use and simulated 

weapons launch, a Galley terminal acting as the DC Central status board, and a terminal 

in the Pilot House or Bridge maintaining the broad tactical picture (Figure 3). Each of 

these three functions will be described in general terms below. 

Midshipman in the CIC of their Aegis-equivalent YPG would control a host of 

simulated sensors and weapons that emulate the functions of their real world 

counterparts, such as fire control and search radars, hull-mounted sonars, torpedoes, 

missiles and deck guns, and defensive systems such as CIWS, flares and chaff (Figure 4).  

 

 

 

 

 

YPTDS 

YPTDS 

YPTDS 
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Figure 4. Sensors and weapons simulated by the YP-TDS system. 

 

 

           MK-16 CIWS                                            Mk-75 Otto Melara 

           MK41 Vertical Launch System (SM-2, Harpoon, TASM) 

 SPY-1D Phased-Array Radar                       SQS53C Hull-mounted Sonar 
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Figure 5. YP elevation view for maintaining Damage Control status. 

 

 DC Central - perhaps located in the Galley - would maintain the current damage 

and damage control status of major ship systems and compartments. Simulated damage 

incurred by a simulated weapon (missile, shell, torpedo, mine, etc.) would appear on an 

elevation view of the YP, displaying the ship as a series of equipment or compartment 

zones, similar to Figure 5. One possible use for this capability would be in conducting 

DC training drills. Supervised by a drill monitor, damage control parties could be 

deployed to the scene of a casualty to combat the casualty and communicate status with 

DC Central. Fire, flooding, and equipment damage could be annotated according to 

reports received from the scene. 
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Figure 6. Nautical display of actual (own-ship) and simulated contact positions. 

 

 The tactical display monitored and maintained at a third station could be repeated 

at all other stations.  An example of such a display appears in Figure 6. With the 

exception of own-ship, each symbol represents a simulated contact as detected by 

simulated sensors, plotted on a representation of the local YP operating area. GPS could 

be used to accurately display own-ship position. 

Providing the capabilities described above for each of the three functional stations 

would involve a number of issues, including (1) choice of networking hardware and 

communication protocol, (2) design and implementation of a user-interface, (3) digital 

chart representation, (4) generation of own-ship and contact position, and (5) registration 

of actual own-ship position with the digital chart. Each of these areas will be further 

discussed. 
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2.2. Architecture and functional components 
 

An implementation of the above capabilities would best be accomplished by breaking 

functionality into the following series of subsystems: 
 

1. User interface 

2. Simulation control 

3. Tactical display 

4. Nautical display 

5. Network Input/Output 

6. Scenario Simulation 
 

Because the system is composed of networked terminals, a client-server software 

architecture is suggested. Block diagrams depicting a client-server arrangement, the 

breakdown by functional subsystem, and a set of associated data flows are illustrated in 

Figures 7-9. A brief description of each subsystem follows. 

 

Figure 7. Client-server architecture. 

YPTDS 
YPTDS 
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Figure 8. YP-TDS Server. 

 

Figure 9. YP-TDS Client. 
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User Interface The user-interface design should allow the user to access 

functionality via menus, keyboard and mouse, and to pan and 

zoom through the simulated NTDS display. Individual menus 

should be provided to incorporate logically separate functionality 

such as damage control status display and update, weapons and 

countermeasure selection, and system configuration settings. 

Interface actions such as contact selection, the ability to determine 

bearing and range from the tactical display, and accessing contact 

information should also be provided. 

 

Simulation Control This subsystem would form the heart of the YP-TDS software. 

Simulated tracks of weapons in flight, aircraft, submarines, 

neutral vessels,  etc., would be generated here, as well as own-

ship actual position as obtained from a GPS unit. It must 

communicate with the Nautical and Tactical Display subsystems 

to produce a dynamically changing NTDS display. The terminal 

acting as server would broadcast contact position to all other 

terminals on the network.  Terminals acting as clients will receive 

this data, then pass it along to the Tactical Display subsystem. 

 

Tactical Display  This subsystem should display own-ship position, and contact 

position generated by Simulation Control (if a contact is within 

own-ship's radar coverage) using standard NTDS symbology for 

surface, air, subsurface, friendly, threat, etc, contacts.  In addition, 

the contact name, ID number, classification, speed, bearing, 

position and other data, should be made available by this 

subsystem. 

 

Nautical Display This subsystem presents a digital chart on which the Tactical 

Display is super-imposed. Internal chart representation should 
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allow for zooming and panning. Additional features such as a 

latitude and longitude grid overlay may be provided. 

Network Input/Output  This subsystem is responsible for sending and receiving the 

contact data, damage control status data, and simulation 

control data between the server terminal and multiple client 

terminals.  
 

Scenario Simulation This subsystem will initialize the simulation control 

subsystem with all simulated contacts. It should allow  

contacts to be randomly generated or read from a scenario 

specification file2. 
 

2.3. Design decisions 

 

 PC’s running Windows XP will be used as the display terminals. Software will 

written in C and C++, and developed within the Microsoft Visual C++ 6.0 (MSVC++) 

environment. Third party libraries will be used to implement the color display, 

networking control, GPS interfacing, and multi-tasking. 

Windows XP was chosen as it is the ubiquitous operating system in use, most 

often found preloaded on systems purchased today. C/C++ and MSVC++ were chosen 

because of existing experience programming in those languages. To network YP-TDS 

terminals, TCP/IP over ethernet was chosen because of it’s proven ability to reliably 

transmit data fast, as well as the large amount of documentation available. For graphics, 

the Allegro freeware libraries were chosen due to several years of  programming 

experience with them, as well as their ability to handle two-dimensional primitives 

(circles, lines, rectangles, etc.) quickly and efficiently. The GPS unit chosen is an external 

Holux GM-210 GPS receiver, selected because of its ability to connect to a serial port, as 

well as its use of the NMEA0183 (National Maritime Electronics Association) standard 

protocol. A serial port interface was desired because of the abundance of documentation 

available on the internet on serial interfaces, and because of existing experience with 

building parallel port interfaces, which are very similar. A GPS device utilizing an 
                                                           
2 The current implementation does not include the ability to read a simulation scenario from a file. 
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NMEA0183 protocol was desired because of the ease of decoding an NMEA string, and 

the abundance of freely available documentation. 

3. IMPLEMENTATION 

 

 Details of the YP-TDS implementation are provided in the following sections, and 

is presented according to functional subsystem. 

 

3.1. User interface 

 

 Graphics are displayed at a resolution of 1024 x 768, in either 16-bit or 32-bit 

color. The custom graphic user interface (GUI) makes heavy use of two functions: 

Make_Menu, and Make_Button. They provide an easy way to quickly add and 

remove menus, menu options and functionality, and offer the advantage of 

customizability. The two functions are described below. 

 

int Make_Window(int X1, int Y1, int size_x, int size_y, 

                char *title, 

                int win_type, int win_color, int win_trans) 

 

This function allocates memory for and renders a color gradient within a region of pixels 

determined by size_x and size_y, producing a rectangular bitmap to be used as a 

menu.  The base color of the menu is determined by win_color, and its label, given by 

the string title, is drawn at the top left. The menu itself is drawn at position (X1,Y1) 

relative to the parent window upper left corner, using transparency determined by 

win_trans (0..255, 0 being opaque ). The function returns an index into a windows 

array, so that images or buttons - both implemented as a type of window - may be 

rendered to the menu. There are three types of menus, determined by the win_type 

parameter: 

0 – Toolbar  Appears at the top of the main program window. 

1 – Status  Contact Profile and Mini-map 

2 – Console  Damage control and Network Settings 
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Note that menus are rendered using transparency to keep the tactical display visible even 

when menus are dropped down, as shown in Figure 10. 

 

Figure 10. Drop-down menu with transparency. 

   

Using the index returned from Make_Window, a menu can have an alternate bitmap 

loaded over it. In Figure 11, the Network Settings diagram is used instead of a color 

gradient to form the "background". 

 

 

Figure 11. A "menu" rendered with a bitmap that is not a color gradient. 
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int Make_Button(int X1, int Y1, int size_x, int size_y, 

                char *title, 

                int button_type, int parent, 

                int *toggle, int command) 

 

Make_Button is very similar to Make_Window in how it allocates memory for its 

bitmap. Like Make_Window, it returns its own array element index. The 

Make_Button function not only handles buttons with the standard push in/out  

behavior, but gauges and indicators as well. For example, the button labeled OFF at the 

bottom right of the menu in Figure 11 is created and rendered using the same method as 

buttons that can be pushed, however it is not "clickable".  Parameters to this function are: 

 

• X1 and Y1, its position within its host window 

• parent, the host windows array index 

• command, a value the button will write to a global variable used by the 

Simulation Control subsystem 

• toggle, a pointer to a two-state variable whose value is to be watched. When 

the variable changes state, the button automatically toggles its appearance. This 

feature is useful for linking buttons together. 

• button_type, controls behavior according to: 

 

0 – Normal clickable button 

1 – Transparent unclickable button 

2 – On/Off indicator 

3 – Numeric value indicator 

4 – Damage Control Zone  

5 – Text dialogue box 

 



 16 

 

Figure 12. Push buttons and non-clickable buttons appearing in a menu. 

 

3.2. Simulation control 

   

 This portion of the YP-TDS software contains the main program loop, shown in 

Figure 13. It is an endless loop - processing user input, updating contact tracks, and 

rendering the screen image - until the user chooses to exit the program. The main loop 

begins by reading mouse clicks and keystrokes and translating them into Commands. 

These are handled by a case structure which to perform the associated task. This system 

is flexible in that additional functionality is easy to incorporate. 

 When in Server mode, the track data of simulated contacts will be modified as 

needed according to the scenario. For example, simulated aircraft will fly at an 

appropriate speed, fishing vessels may turn spontaneously to avoid shallow waters, etc. 

While in Client mode, the system will skip this step entirely, and rely solely on the Server 

to update its track data. 
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Figure 13. Main program loop. 

In turn, code implementing the Nautical Display writes the digitized chart image 

to a temporary buffer (Temp), Contact Display code will overlay NTDS symbols on the 

chart, and Draw Windows code will render windows, menus, and buttons. Finally, before 

the end of the main loop is reached, the temporary buffer is copied to the screen and 

displayed to the user. 

 

3.2.1. Multi-threaded Client-server architecture 

 

The YP-TDS system consists of multiple PC hosts sharing the same contact data. 

Within a host, YP-TDS software is implemented as a collection of threads, each handling 

a specific function, and each able to access - and possibly update - the global simulation 

state. To manage this shared access, a Windows implementation of POSIX pthreads [4] 

is used. Between hosts, TCP/IP sockets are used to handle communication. Both are 

described below. The relationship between threads is represented in Figure 14. 
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Figure 14. Multi-threaded implementation. 
 

Depending on the role the PC plays in the YP-TDS network, it may be one of up 

to three clients, or  the single server. The server is always designated the CIC terminal. 

When the server is first established, it will activate a thread called Listen_thread, 

the job of which is to detect potential clients attempting to connect via a TCP/IP stream 

socket. Upon connection, a unique socket is established for the client, a thread named 

clt_recv is created, and the mode assumed by the client (Galley, Bigscreen or Bridge) 

is returned.  

clt_recv (on the server) is responsible for all communication with a client 

until the network connection is broken. Listen_thread (on the server) remains active 

to watch for additional connections, and will only close when the CIC terminal 

disconnects itself as the server. On the client side, upon connection to a server a single 

thread called Client_thread is created to communicate directly with its 

corresponding clt_recv thread on the server. It is through these two functions that the 

simulation state variable (explained below) is passed. 

Within either client or server, race conditions are possible if two threads attempt 

simultaneous access to the same data. To arbitrate access to shared data a mutual 
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exclusion lock mutex is employed. A thread wishing to obtain access to shared data must 

first obtain the lock. Once a lock is obtained, other threads attempting access will sleep 

until the lock becomes available. As a specific example, the GPS_thread must update 

own-ship longitude and latitude, while the main program thread may be simultaneously 

trying to read them. A mutex must be used to prevent the main thread from reading a 

position value in an intermediate state of update. 

 

3.2.2. Own-ship position from GPS 

 

In addition to the Listen_thread, the server will also create a thread to 

handle own-ship position updates. A GPS_thread monitors a Holux Company Global 

Positioning System (GPS) receiver to obtain own ship position, course and speed. The 

GPS unit is connected through a serial port transmitting data at 4800 baud. The data is 

conveniently in the form of ASCII strings in NMEA0183 Marine Interface Standard 

format, illustrated  in Figure 15. 

 

$GPGSA,A,1,08,29,28,,,,,,,,,,17.7,14.6,10.0*0A 
$GPRMC,205032.880,A,3858.9382,N,07628.9307,W,0.00,116.91,091103,,*13 
$GPGGA,205033.880,3858.9383,N,07628.9320,W,1,03,14.6,-23.6,M,,,,0000*34 
$GPGSA,A,1,08,29,28,,,,,,,,,,17.7,14.6,10.0*0A 
$GPGSV,3,1,10,27,71,212,,08,59,299,45,31,51,047,,11,48,142,*71 
$GPGSV,3,2,10,28,29,295,46,03,15,054,,02,11,100,,29,09,316,39*7D 
$GPGSV,3,3,10,07,09,238,,13,06,202,*7B 
$GPRMC,205033.880,A,3858.9383,N,07628.9320,W,0.00,116.91,091103,,*16 
$GPGGA,205034.880,3858.9382,N,07628.9316,W,1,03,14.6,-23.6,M,,,,0000*37 
$GPGSA,A,1,08,29,28,,,,,,,,,,17.7,14.6,10.0*0A 

Figure 15. Example NMEA GPS strings. 
 
The Holux GPS receiver provides several types of strings, but the YP-TDS system has 

use for only the GPGGA and GPRMC strings, and within these strings, uses only the 

latitude, longitude, course and speed [5]. An example GPGGA string, providing latitude 

and longitude, is shown Figure 16. 
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Figure 16. NMEA GPGGA string. 
 
Extracting information from an NMEA string is accomplished with the following code: 

// if string starts with GPGGA 
if (!memcmp ( Data+nIndex, "$GPGGA",6)) {  
  // break string into commas and spaces separated words  
  Tokenize(Data+nIndex, token); 
  
  // lat and long references for the area displayed by YP-TDS 
  llMaxY=39003900; llMinY=38968400; 
  llMaxX=76489100; llMinX=76417200; 
 
  // read and convert lat and long into a usable format 
  YY = (((token[1][0]-'0')*10+(token[1][1]-'0'))*1000000 +  
       ((((token[1][2]-'0')*10+(token[1][3]-'0'))*100)/60.0)*10000 + 
  ((token[1][5]-'0')*10+(token[1][6]-'0'))*100 +  
  ((token[1][7]-'0')*10+(token[1][8]-'0'))); 
 
  XX = (((token[3][1]-'0')*10+(token[3][2]-'0'))*1000000 +  
  ((((token[3][3]-'0')*10+(token[3][4]-'0'))*100)/60.0)*10000 + 
  ((token[3][6]-'0')*10+(token[3][6]-'0'))*100 +  
  ((token[3][8]-'0')*10+(token[3][9]-'0'))); 
 
  // convert own ship’s lat and long to display bitmap coordinates 
  pthread_mutex_lock( &mutex ); 
    Universal.x[selfship] = 
       3584 - (((float)(XX-llMinX)/(float)(llMaxX-llMinX))*3584); 
    Universal.y[selfship] = 
       1920 - (((float)(YY-llMinY)/(float)(llMaxY-llMinY))*1920); 
  pthread_mutex_unlock( &mutex ); 
} 
   
// if string starts with GPRMC 
if (!memcmp ( Data+nIndex, "$GPRMC",6)) { 
  pthread_mutex_lock( &mutex ); 
    Tokenize(Data+nIndex,token); 
                
    // set speed of own ship according to the GPS 
    Universal.Course[selfship] =  
      ((token[8][0]-'0')*100+(token[8][1]-'0')*10+(token[8][2]-'0')); 
    Universal.Speed[selfship] = 
      ((token[7][0]-'0')); 
  pthread_mutex_unlock( &mutex ); 
} 

$GPGGA,205034.880,3858.9382,N,07628.9316,W,1,03,14.6,-23.6,M,,,,0000*37 
 
 
 
       UTC time          Latitude       N/S   Longitude  E/W GPS fix quality 
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3.3. Nautical Display 

 

 The function of the Nautical display is to draw the background ocean and terrain 

on which the Tactical Display will overlay NTDS symbols. The background image is a 

composite of 35 images loaded from files in 32-bit, 640 x 480 color PCX format, derived 

from digital nautical charts in BSB format [6].  BSB is a compressed raster format used 

for distributing nautical charts by various organizations in North America, including the 

National Oceanographic and Atmospheric Administration (NOAA). The pre-processing 

involved with chart data conversion is accomplished in the steps depicted in 

Figures 17-20: 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 17. A BSB chart is sampled at 2240 x 1200 resolution. 

 

 

 

 

 

 

 

 

 

Figure 18. Image processing removes unwanted features. 
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Figure 19. Deep water, shallow water, lowlands, and highlands are labeled. 

                           Depth gradients are approximated by shades of blue, while land is 

                           textured using an arbitrary bitmap. 

 

 

  

 

 

 

 

 

 

 

Figure 20. 2x scaling is applied and pixels are interpolated. 

                                        The chart is partitioned into 35 tiles and stored on 

                                        disk in PCX  format. 

  

PCX file format was chosen because of its fast decompression speed, moderate 

compression ratio and lossless compression. All files are loaded into memory upon 

starting the program. When the YP-TDS view is interactively panned or zoomed by the 

user, the Nautical Display draws only those images that are within the selected view, 

greatly speeding up the rendering process.  
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3.4. Tactical Display 

 

 NTDS symbols are overlayed on the nautical chart using the following approach. 

At every cycle of the display loop, a back buffer is loaded with the digitized chart by the 

Nautical Display subsystem. All additional drawing - for example, contact position 

symbols, drop-down menus, etc. is rendered into (and overwriting portions of) this buffer. 

The back buffer is finally copied to the screen (or front) buffer, which is then displayed. 

This provides seamless animation free of flickering, screen tearing and various other 

video artifacts produced by non-buffered systems. 

 Twenty-one different NTDS symbols used by the YP-TDS display are shown in 

Table 1, and are constructed from the following primitives: 

  

circle (Temp, X, Y, R, C);  

Draw a circle at (X,Y) with radius R and color C 

 

 arc (Temp, X, Y, Rad1, Rad2, R, C); 

Draw an arc from angle Rad1 to angle Rad2 with radius R and color C. 

 

 rect (Temp,  X1, Y1, X2, Y2, C); 

Draw a rectangle from corner (X1,Y1) to corner (X2,Y2) with color C.  

 

line (Temp, X1, Y1, X2, Y2, C); 

Draw a line from (X1,Y1) to (X2,Y2) with color C.   

 

Surface Aircraft SubSurf Land Base Torpedo Missile Helo
OwnShip N/A N/A N/A N/A N/A N/A
Friendly

Enemy
Neutral N/A N/A N/A

Unknown N/A N/A N/A
 

Table 1 
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 Associated with each contact is a set of variables for storing latitude, longitude, 

course, and speed. Latitude and longitude are converted to a screen position at which a 

symbol is plotted. A contact's course determines the direction of the velocity leader, the 

line emerging from the center of each NTDS symbol, and its speed determines the 

leader's length.  In addition, each track is assigned a Track Number, which can be toggled 

on or off using an the Allegro graphics API [7] function textout_centre, as follows 

 

textout_centre (temp, font, text, X, Y, C);  
 
Writes text centered at ( X,Y ), in font font, and color C. 
 

 
To depict radar range, weapon range, and bearing lines, the following two functions are 

used: 

 

 do_line ( temp, X1,Y1, X2,Y2, C, pixel_fx );  

 do_circle ( temp, X1,Y1, R,C, pixel_fx ); 

 

In both cases, the function pixel_fx is passed as a parameter as an alternative to 

simply plotting the pixel. Instead, the pixel is randomly displaced, creating a "fuzzy" 

effect. Figures 2 illustrates the bearing lines and range circles that can be displayed. 
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Figure 21. Bearing line and range circles. 

  

3.5. Network Input/Output 

 

 The role of this subsystem is two-fold: if the PC on which it is running is 

designated as the server, it will transmit a one kilobyte structure containing data on the 

tracked contacts (latitude, longitude, altitude, course, speed, damage control information, 

etc.). In its current implementation the YP-TDS system can track no more than forty 

contacts.  
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The state variable is a struct, defined below: 

 

struct state  

{ 

  float x[40];          // Longitude 

  float y[40];          // Latitude 

  int z[40];            // Altitude 

  int Course[40];       // Contact’s course 

  float Speed[40];      // Contact's speed 

  int Team[40];         // Represents enemy, friend, or neutral 

  int Symbol[40];       // Symbol used to represent contact 

  int Class[40];        // Contact's true class 

  int Identified[40];   // Flag to determine if contact is unknown 

  int visible[40];      // Set to true if a contact is in sight 

  int radar_range[40];  // ship’s radar halo 

  int Total_Damage[40]; // Greatest of fire/structural/flooding damage 

  char DCDamage[6];     // between six different stations 

  char DC_FFS[6];       // 0-none 1-class A   2-class B   3-class C 

  char StructDamage;    // Total structural damage 

  char NetFire;         // Total fire damage 

  char NetFlood;        // Total flood damage 

  char CrewKilled;      // Total crew sent to the galley 

  int gps;              // Boolean flag 

  int connected;       // who is connecting  

}; 

 

If a PC is connected as a client, it will not send the state variable, but will instead 

receive it. When the state is received, the client will send back the three byte string 

“YPG” to signal that the state was received. The server will not attempt to send another 

state to that client until it has received the reply. If the client is designated as the galley 

PC, than it has the option of sending a three byte string “DCX”,  where "DC" signifies the 

string is carrying damage control information encode in "X" in the following manner: 

 

X = ( ZoneToFix ) + 6 * FixCommand 
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where ZoneToFix is an integer from 0 to 5 representing one of the six zones that can be 

damaged. FixCommand specifies that the galley is extinguishing a fire (0), or stopping 

flooding (1). Figure 22 shows the YP-TDS DC status board display with the ship having 

suffered various casualties. 

 

Figure 22. DC status board showing various casualties. 

 

3.6. Scenario Simulation 

 

 This subsystem’s purpose is to load and initialize the training scenario with both 

preset and pseudo-random data. The preset data can be specific ships and aircraft 

loitering at a specific location, with specific names and performing specific activities. 

The pseudo-random data functions by randomly generating contacts based on preset 

location traits (air traffic corridors, shipping lanes, etc.) This facet of the Scenario 

Simulation guarantees that every training simulation will be slightly different. 

 For now, the locations of all contacts are hard-coded and cannot be changed 

externally. No new platforms can be added, and no starting positions, names, bearings, 
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etc. can be altered. However, future versions will feature fully configurable platforms, 

missions, and scenarios specified in an ASCII text configuration file. 

 

4. Results and Lessons Learned 

 

YP-TDS is a system that provides YP craft with a tactical display and the means to 

simulate combat, damage control, and command and control in a CIC environment. The 

YP-TDS system is a set of three to four PCs networked together to form a local area 

network. Each PC functions as an access point into the YP-TDS system, where users can 

manipulate the system. From CIC a Midshipman user can launch weapons, turn on and 

off sensors and keep track of damage control. From the bridge, a Midshipman Officer of 

the Deck can maintain awareness of the tactical picture and the damage control status of 

his ship. From the galley, a neutral referee can enter or monitor simulated damage to the 

ship, and upon receiving reports that that damage has been repaired, can update the 

system. A ship can be virtually sunk by simulated attacks. The ship’s position is 

accurately displayed on each of the PCs using the Global Positioning System. 

The largest hurdles in designing such a project is not only removing bugs, and ridding 

the system of unforeseen shortcomings, but also optimizing code for speed, reliability and 

providing the user with an easy to use interface. This is a daunting task when 

simultaneously adding modules and constantly updating functional subsystems. The 

solution to the difficulties was to program the YP-TDS system in sections. For example, 

the Nautical system was written as a separate program, as was the GPS system.  Only 

after both were thoroughly debugged and tested were they added to the actual YP-TDS 

program.  Other hurdles dealt with limitations of the computer software to communicate 

to the GPS hardware, or different computers transmitting and receiving data across the 

network at different speeds. The solutions to these problems were implemented as 

temporary fixes, or simple workarounds. In other cases, limitations could not be 

immediately resolved. Because of the way the Nautical charts are loaded, and because 

their format must undergo a lengthy preprocessing before it can be used, only one area 

can be shown. This limitation’s only solution is to use a better chart format, one that does 

not require as much preprocessing. 
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Other limitations include a fixed number of tracks the YP-TDS system can handle at 

once, at present forty, including own-ship. In the future, this number will be dynamic, 

and automatically adjusted to allow as many contacts as is limited by the server 

computer’s memory and processing speed. Although the YP-TDS system was first 

designed to be used in 32-bit color mode, speed issues dictated that a 16-bit color mode 

be used. In the future this will become an option so that users with faster computers may 

select the 32-bit option. The system also lacks some basic user friendly functions such as 

a right-click menu so that a user can quickly update information about a track, or gather 

information about it. 

The deficiencies and limitations of the YP-TDS system pale in comparison to the 

features it provides. Future versions of this system will address these limitations as well 

as add ever more functionality to support the goal of embracing the Network Centric 

Warfare concept within the Naval Academy training curriculum. 

 

5. Future work 

 

Although the YP-TDS system delivers superb performance there is still room for 

improvement. The groundwork is laid for the expansion of this system from deployment 

aboard a single YP to use on  several YP,  with communications via a wireless network. 

Existing HF Frequency Shift Keying (FSK) capable radios already installed on the YP 

could be used to allow every YP to electronically report its position as well as other 

simulation data to all other YP in a wide area network. One possible approach is to use a 

PSK31 data transmission algorithm to prove the concept can work, and then will work to 

improve the speed and reliability of the wireless network. 

Among its current limitations is the inability of the Nautical Display to display other 

than the Santee Basin locale. This limitation is intentional, as use of the raster-based BSB 

charts used by the Nautical Display was intended solely to prove the YP-TDS system is 

feasible. They are eventually to be replaced with a Vector Product Format (VPF) chart. 

VPF allows for greater accuracy and much better control of what chart features to display 

(e.g.,  it would be easier to filter in or out such data as navigational aids, gridlines, and 

depth sounding numbers). Currently, the charts must be pre-processed before use, but 
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future upgrades might feature charts displayed on the fly, perhaps using the OpenGL 

graphics API. 

The is no artificial intelligence (AI) driving the simulated contacts as of yet. Aircraft 

and ships simply move along their pre-set bearing at a fixed speed. Weapons do not 

realistically track their target., and do not impact their target. Future work will allow all 

contacts to behave in a realistic fashion, including computer controlled hostile contacts 

that will attempt to meet their own mission criteria, including but not limited to 

destroying a YPG battle group. 

Currently there is no way to change the Mission Scenario. The position, bearing and 

other traits of all platforms, as well as battle group composition and weapons load out are 

fixed. Future versions will allow for a script-like configuration language to be used to 

custom tailor the scenario to meet a multitude of training needs. Figures 23 depicts an 

example set of scenario configuration scripts. 

Since this simulation will eventually take place aboard a YP, it would improve 

realism if the environment better seemed like a combat environment. To do this, the CIC 

laptop might be patched into the 1MC of the YP, giving the ability to play various sound 

effects over the ships announcing system - for example, the sound of  a Close In 

Weapons System firing, a missile flyover or launch, a deck gun firing with the sound of a 

shell casing clattering on the deck. All of these sound effects would be provided with as 

much authenticity as possible, and a sound effects library has been in stages of assembly 

since before this semester. 
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Figure 23. Suggested scenario configuration file format. 

 
 
 

Example Load Out file:  SensorCG.txt 
 
sensor 
{ 
 Name = SPY-1D 
 Surface = true 
 SRange = 700  
 Air = true  
 ARange = 1100 
 FC = true  
 FRange = 1100 
 Sonar = false 
 PRange = 1100 
 Location = 1 
} 
 

Example Load Out file:  Load_FFG.txt 
 
weapon 
{ 
 76mm_AA = 200 
 76mm_AP  = 150 
 CWIS = inf 
 Harpoon = 4 
 SM-1 = 20 
} 

Example Load Out file:  Load_CG.txt 
 
weapon 
{ 
 5inch_AA = 200 
 5inch_AP  = 150 
 CWIS = inf 
 ASROC = 4 
 TASM = 0 
 TLAM = 8 
 SM-2 = 12 
} 

Example Weapons file:  Weapons.txt  
 
magazine 
{                                                                     
     Name = HARPOON                                      
     Range = 800                                                   
     Speed = 250                                                   
     Warhead = 2000                                             
     Jam = false                                                     
     Sensor = radar                                                
}                                     
 

Example Weapons file:  Mission1.txt   
       
YPG 
{ 
     YP = 1 
     Team =1 
     Designate = 1001 
     Lat = 38.58.00 
     Long = 76.24.00 
     Bearing = 180.0 
     loadout = Load_CG.txt 
} 
 
YPG 
{ 
     YP = 2 
     Team =1 
     Designate = 1002 
     Lat = 38.42.10 
     Long = 76.22.80 
     Bearing = 170.0 
     loadout = Load_CG.txt 
} 
 
YPG 
{ 
     YP = 1 
     Team =2 
     Designate = 1001 
     Lat = 38.68.00 
     Long = 76.99.80 
     Bearing = 180.0 
     loadout = Load_CG.txt 
} 
 
Neutral 
{ 
     Identified = true 
     Type = Surface 
     Lat = 38.54.00 
     Long = 76.20.00 
     Bearing = 40.0 
     Speed = 10 
} 
 
Neutral 
{ 
     Identified = false 
     Type = Air 
     Lat = 38.72.00 
     Long = 70.14.00 
     Bearing = 175.0 
     Speed = 120 
} 
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