
SI460 Computer Graphics GLUI API documentation (abridged)

Introduction

GLUI is a GLUT-based C++ library which provides user interface controls ("widgets")

such as buttons, checkboxes, radio buttons, and spinners to OpenGL applications.

Features of the GLUI User Interface Library include:

• Integration with GLUT

• Simple creation of a new user interface window with a single line of code

• Standard user interface controls such as:

▪ Buttons

▪ Checkboxes

▪ Radio Buttons for mutually-exclusive options

▪ Editable text boxes for inputting text, integers, and floating-point values

▪ Spinners for interactively manipulating integer and floating-point values

▪ Static text fields

▪ Panels for grouping sets of controls

▪ Separator lines to help visually organize groups of controls

▪ Controls can generate callbacks when their values change

• Layout and sizing of controls is automatic

• Variables can be linked to controls and automatically updated when the value of the

control changes

• Layout and sizing of controls is automatic

• User can cycle through controls using Tab key

Background

Many applications can be built using only the standard GLUT input methods - the

keyboard, mouse, and pop-up menus. However, as the number of features and options

increases, these methods tend to be greatly overworked. It is not uncommon to find

GLUT applications where almost every key on the keyboard is assigned to some

function, and where the pop-up menus are large and cumbersome. The GLUI User

Interface Library addresses this problem by providing standard user interface elements

such as buttons and checkboxes. The GLUI library is written entirely over GLUT, and

contains no system-dependent code. A GLUI program will therefore behave the same on

SGIs, Windows machines, Macs, or any other system to which GLUT has been ported.

Furthermore, GLUI has been designed for programming simplicity, allowing user

interface elements to be added with one line of code each.

SI460 Computer Graphics GLUI API documentation (abridged)

Simple Programming Interface

GLUI has been designed for maximum programming simplicity. New GLUI windows

and new controls within them can be created with a single line of code each. GLUI

automatically sizes controls and places them within their windows. The programmer does

not need to explicitly give X, Y, width, and height parameters for each control -

an otherwise cumbersome task.

GLUI provides default values for many parameters in the API. This way, one does not

need to place NULL or dummy values in the argument list when some feature are not

needed. As an example, there are several ways to create a checkbox:

GLUI *glui;

...

glui->add_checkbox("Click me");

// Adds a simple checkbox with the name "Click me"

glui->add_checkbox("Click me", &state);

// The variable state will now be automatically update to reflect the

// state of the checkbox (see live variables below).

glui->add_checkbox("Click me", &state, 17, callback_fn);

// Now we have a live variable, plus a callback function will be

// invoked (and passed the value '17') whenever the checkbox changes

// state.

Note how a default size and position for the checkbox was never specified - GLUI

automatically lays out controls in their window.

Live Variables

GLUI can associate live variables with most types of controls. These are regular C/C++

variables that are automatically updated whenever the user interacts with a GLUI control.

For example, a checkbox may have an associated integer variable, to be automatically

toggled between one and zero whenever the user checks or unchecks the control. A

editable text control may maintain an entire character array as a live variable, such that

anything the user types into the text box is automatically copied into the application's

character array. This eliminates the need for the programmer to explicitly query each

control's state to determine their current value or contents.

In addition, a GLUI window can send a GLUT redisplay message to another window

(i.e., a main graphics window) whenever a value in the interface is changed. This will

cause that other window to redraw, automatically using the new values of any live

variables. For example, a GLUI window can have a spinner to manipulate the radius of

an on-screen object. When the user changes the spinner's value, a live variable is

automatically updated, and the main graphics window is sent a redisplay message. The

graphics window then redraws itself, using the current (that

is, the updated) value.

SI460 Computer Graphics GLUI API documentation (abridged)

Live variables are automatically updated by GLUI whenever the user interacts with a

control, but what happens if the user directly changes the value of variable? For example,

what if the application changes the radius with a line such as:

 radius = radius * .05; // Updates variable, but not control

instead of going through the GLUI API:

 radius_control->set_float_val(radius * .05); // Update control also

Clearly, the first method will leave the variable and the on-screen control out-of-sync. To

remedy this, one can synchronize live variables. This procedure will check the current

value of all live variables in a GLUI window, and compare them with the controls'

current values. If a pair does not match (that is, the user changed a live variable

without telling GLUI), then the control is automatically updated to reflect the variable.

Thus, one can make a series of changes to variables in memory, and then use the single

function call sync_live() to synchronize the user interface:

radius = radius * .05; // Change a group of variables that

aperture = aperture + .1; // are linked to controls

num_segments++;

glui->sync_live(); // Update user interface

If a pointer to a live variable is passed to a control creation function (for example,

add_checkbox()), then the current value of that variable will be used as the initial value

for the control. Thus, remember to always properly initialize live variables (including

strings), before passing them to a control creation function.

Basic usage

Integrating GLUI with a new or existing GLUT application is very straightforward. The

steps are:

1. #include the file "glui.h" in all sources that will use the GLUI library.

2. Create your regular GLUT windows and popup menus as usual. Make sure to store the

window id of your main graphics window, so GLUI windows can later send it redisplay

events:

 int main_window = glutCreateWindow("Main gfx window");

3. Register your GLUT callbacks as usual (except the idle callback, discussed below).

4. Register your GLUT idle callback (if any) with GLUI_Master (a global object which is

already declared for you), to enable GLUI windows to take advantage of idle events

without interfering with your application's idle events. If you do not have an idle

callback, pass in NULL:

GLUI_Master.set_glutIdleFunc(idle);

or

GLUI_Master.set_glutIdleFunc(NULL);

SI460 Computer Graphics GLUI API documentation (abridged)

5. In your idle callback, explicitly set the current GLUT window before rendering or

posting a redisplay event. Otherwise the redisplay may accidently be sent to a GLUI

window:

void myGlutIdle(void)

{

 glutSetWindow(main_window);

 glutPostRedisplay();

}

6. Create a new GLUI window using

 GLUI *glui = GLUI_Master.create_glui("name", flags, x, y);

flags, x, and y are optional arguments. If not specified, default values will be used.

flags has no effect. x, and y specify the initial GLUI window position.

7. Add controls to the GLUI window. For example, we can add a checkbox and a quit

button with:

glui->add_checkbox("Lighting", &lighting);

glui->add_button("Quit", QUIT_ID, callback_func);

9. Let each GLUI window you've created know where its main graphics window is:

glui->set_main_gfx_window(window_id);

10. Invoke the standard GLUT main event loop, just as in any GLUT application:

glutMainLoop();

11. Link to the GLUI library when building the application.

SI460 Computer Graphics GLUI API documentation (abridged)

Summary of user-interface elements:

Control type Class Used for … set/get
Live

var?
Callback?

Panel GLUI_Panel Grouping controls

Column GLUI_Column Grouping controls

Button GLUI_Button Invoking an action yes

Checkbox GLUI_Checkbox Handling booleans
get_int_val

set_int_val
int yes

RadioGroup

Radio

Button

GLUI_RadioGroup

GLUI_RadioButton

Handling mutually-exclusive

options

get_int_val

set_int_val
int yes

Static text GLUI_StaticText Text labels set_text

get_int_val

set_int_val
int

get_float_val

set_float_val
float Editable text GLUI_EditText

Text that can be edited - and

optionally interpreted as

integers or floats.
get_text

set_text
text

yes

get_int_val

set_int_val
int

Spinner GLUI_Spinner
Interactively manipulating

numeric values. get_float_val

set_float_val
float

yes

Separator GLUI_Separatot
Separating controls with a

line

Panels:

Columns:

Buttons:

SI460 Computer Graphics GLUI API documentation (abridged)

Checkboxes:

Radio buttons:

Static text:

Editable text boxes:

Spinners:

Separators:

SI460 Computer Graphics GLUI API documentation (abridged)

API

create_glui

Creates a new user interface window

Usage

GLUI *GLUI_Master_Object::create_glui(char *name, int flags=0,
 int x=-1, int y=-1);

name - Name of new GLUI window

flags - Initialization flags. No flags are defined in the current

 version.

x,y - Initial location of window. Initial size cannot be specified,

 because GLUI automatically resizes windows to fit all controls.

Returns: Pointer to a new GLUI window

set_glutIdleFunc

Registers a standard GLUT Idle callback idle() with GLUI. GLUI registers its own Idle

callback with GLUT, but calls this user function idle() after each idle event. Thus every

idle event is received by the callback idle(), but only after GLUI has done its own idle

processing. This is mostly transparent to the GLUT application: simply register the idle

callback with this function rather than the standard GLUT function glutIdleFunc(), and

the GLUT application will work as usual. The only caveat is that under the GLUT

specification, the current window is undefined in an idle callback. Therefore, your

application will need to explicitly set the current window before rendering or posting any

GLUT redisplay events:

void idle(void)
{
 if (glutGetWindow() != main_window)
 glutSetWindow(main_window);
 glutPostRedisplay();
}

This ensures that the redisplay message is properly sent to the graphics window rather

than to a GLUI window.

Usage
void GLUI_Master_Object::set_glutIdleFunc(void (*f)(void));

f - GLUT Idle event callback function

set_main_gfx_window

SI460 Computer Graphics GLUI API documentation (abridged)

Tells a GLUI window which other (standard GLUT) window to consider the main

graphics window. When a control in the GLUI window changes value, a redisplay

request will be sent to this main graphics window.

Usage

void GLUI::set_main_gfx_window(int window_id);

window_id - ID of main graphics window.

enable, disable

Enables or disables (grays out) a GLUI window. No controls are active when a GLUI

window is disabled.

Usage

void GLUI::enable(void);
void GLUI::disable(void);

close

Cleanly destroys a GLUI window.

Usage

void GLUI::close(void);

sync_live

Synchronizes all live variables associated with a GLUI window. That is, it reads the

current value of the live variables, and sets the associated controls to reflect these

variables.

Usage

void GLUI::sync_live(void);

Controls

SI460 Computer Graphics GLUI API documentation (abridged)

There are two functions to create each type of control. One will be named add_XXXX()

(where XXXX is replaced by the name of the specific control), while the other follows the

form add_control_to_panel(). The second form nests the control within a panel,

while the first form places the control at the top level of the window. Panels are used to

group related controls togethers, and panels can be nested within other panels.

Many controls accept live variables and/or callbacks. To use live variables (application

variables that are automatically updated by the GLUI library), simply pass a pointer to

the variable (int, float, or character string) to the add_control function as the control

is created. To use callbacks, pass in both an integer ID and a callback function. The

callback function will be called - with the ID as its single parameter - whenever the

control value changes. Multiple controls can share a callback function, which should then

use the ID to determine which control invoked it.

Within a callback or at any other time, the current value of a control can be retrieved with

one of the functions get_int_val(), get_float_val(), or get_text(), depending

on the type of control. For example, a checkbox stores integer values only, while an

editable text box may stores a float, an integer, or plain text, depending on what type of

text box it is. The values of controls can be set using one of set_int_val(),
set_float_val(), set_text().

Common functions

set_name

Sets the label on a button, checkbox, etc.

Usage

void GLUI_Control::set_name(char *name);

name - New label for control

set_w, set_h

Sets new minimum width/height for a control. set_w() is especially useful to increase the

size of the editable text area in an editable text control or spinner.

Usage

void GLUI_Control::set_w(int new_size);

void GLUI_Control::set_h(int new_size);

new_size - New minimum width or height for control

get, set

SI460 Computer Graphics GLUI API documentation (abridged)

Gets or sets the value of a control. Refer to the individual control descriptions below to

see which values can be read and set for each control.

Usage

int GLUI_Control::get_int_val(void);

Returns: Current integer value of control

float GLUI_Control::get_float_val(void);

Returns: Current floating-point value of control

char *GLUI_Control::get_text(void);

Returns: Pointer to string value of control. Do not modify this string directly - use

set_text() instead.

void GLUI_Control::set_int_val(int int_val);
void GLUI_Control::set_float_val(float float_val);
void GLUI_Control::set_text(char *text);

int_val - New integer value for control

float_val - New floating-point value for control

text - New text for control. This is the editable text in an

 editable text box or a spinner, not the label on a button

 or checkbox - use set_name() for that instead.

disable, enable

Disables (grays out) or enables an individual control. A disabled control cannot be

activated or used. Disabling a radio group disables all radio buttons within it, and

disabling a panel disables all controls within it (including other panels). Enabling behaves

similarly.

Usage

void GLUI_Control::enable(void);
void GLUI_Control::disable(void);

set_alignment

Sets the alignment of a control to left-aligned, right-aligned, or centered.

Usage

void GLUI_Control::set_alignment(int align);

align - GLUI_ALIGN_CENTER, GLUI_ALIGN_RIGHT, or GLUI_ALIGN_LEFT.

Panels

SI460 Computer Graphics GLUI API documentation (abridged)

Panels are used to group controls together. An embossed rectangle is drawn around all

controls contained within the panel. If the panel is given a name, it will be displayed in

the upper-left of the rectangle. Panels may be nested.

add_panel, add_panel_to_panel

Adds a new panel to a GLUI window, optionally nested within another panel.

Usage

GLUI_Panel *GLUI::add_panel(char *name, int type = GLUI_PANEL_EMBOSSED);

GLUI_Panel *GLUI::add_panel_to_panel(GLUI_Panel *panel, char *name,
 int type = GLUI_PANEL_EMBOSSED);

name - Label to display in the panel. If string is empty, no label is

 displayed

type - How to draw the panel. The options are:

GLUI_PANEL_EMBOSSED - Draw the panel as a sunken box (default)

GLUI_PANEL_RAISED - Draw as a raised box. Name is not displayed.

GLUI_PANEL_NONE - Does not draw a box. Use this for organizing

 controls into groups without surrounding them

 with a box.

panel - Existing panel to nest the new panel in

Returns: Pointer to a new panel control

Columns

Controls can be grouped into vertical columns. The function GLUI::add_column()

begins a new column, and all controls subsequently added will be placed in this new

column (until another column is added). Columns can be added within panels, allowing

arbitrary layouts to be created.

add_column, add_column_to_panel

Begins a new column in a GLUI window, optionally within a panel.

Usage

void GLUI::add_column(int draw_bar = true);

void GLUI::add_column_to_panel(GLUI_Panel *panel,int draw_bar = true);

draw_bar - If true, a vertical bar is drawn at the column boundary.

panel - Panel to place column in.

Buttons

Buttons are used in conjunction with callbacks to trigger events within an application

SI460 Computer Graphics GLUI API documentation (abridged)

Button

add_button, add_button_to_panel

Adds a new button to a GLUI window, optionally nested within a panel

Usage

GLUI_Button *GLUI::add_button(char *name, int id=-1,
 GLUI_Update_CB callback=NULL);
GLUI_Button *GLUI::add_button_to_panel(GLUI_Panel *panel,
 char *name, int id=-1,
 GLUI_Update_CB callback=NULL);
name - Name of button

id - If callback is defined, it will be passed this integer value

callback - Pointer to callback function (taking single int argument) to

 be called when the button is pressed panel - Existing panel

 to nest button in

Returns: Pointer to a new button control

SI460 Computer Graphics GLUI API documentation (abridged)

Checkboxes

Checkboxes are used to handle boolean variables. They take on either the value zero or

one. The current value of a checkbox can be read with

GLUI_Checkbox::get_int_val(), or set with GLUI_Checkbox::set_int_val().

add_checkbox, add_checkbox_to_panel

Usage

GLUI_Checkbox *GLUI::add_checkbox(char *name, int *live_var=NULL,
 int id=-1,
 GLUI_Update_CB callback=NULL);
GLUI_Checkbox *GLUI::add_checkbox_to_panel(GLUI_Panel *panel,
 char *name,
 int *live_var=NULL,
 int id=-1,
 GLUI_Update_CB callback=NULL);
name - Name of checkbox

live_var - An optional pointer to a variable of type int. This variable

 will be automatically updated with the value of the checkbox

 (either zero or one) whenever it is toggled.

id - If callback is defined, it will be passed this integer value

callback - Pointer to callback function (taking single int argument) to

 be called when the checkbox state changed is pressed. The

 callback will be passed the value id, listed above

panel - Existing panel (or rollout) to nest checkbox in

Returns: Pointer to a new checkbox control

SI460 Computer Graphics GLUI API documentation (abridged)

Radio Buttons

Radio buttons are used to handle mutually exclusive options. Radio buttons exist only in

conjunction with an associated radio group. First a group is created, then buttons are

added to it. Radio buttons are assigned a number in the order in which they are added to

the group, beginning with zero. The currently selected button can be determined with

GLUI_RadioGroup::get_int_val(), or set with

GLUI_RadioGroup::set_int_val().

add_radiogroup, add_radiogroup_to_panel

Usage

GLUI_RadioGroup *GLUI::add_radiogroup(int *live_var=NULL,
 int user_id=-1,
 GLUI_Update_CB callback=NULL);

GLUI_RadioGroup *GLUI::add_radiogroup_to_panel(GLUI_Panel *panel,
 int *live_var=NULL,
 int user_id=-1,
 GLUI_Update_CB callback= NULL);

panel - Panel to nest radio group in

live_var - An optional pointer to a variable of type int. This variable

 will be automatically updated with the number of the

 currently selected radio button. Buttons are

 numbered from zero in the order in which they are added to

 the group

id - If callback is defined, it will be passed this integer value

 when a new radio button is selected

callback - Pointer to callback function (taking single int argument) to

 be called when different radio button is selected. The

 callback will be passed the value id, listed above. Use

 GLUI_RadioGroup::get_int_val() to determine within the

 callback which button is selected.

Returns: Pointer to a new radio group

add_radiobutton_to_group

Usage

GLUI_RadioButton *GLUI::add_radiobutton_to_group(
 GLUI_RadioGroup *group,
 char * name);
group - Radio group to add button to

name - Name for radio button

Returns: Pointer to a new radio button

Static Text

SI460 Computer Graphics GLUI API documentation (abridged)

Static text controls are used to display simple text labels within a GLUI window. The text

to display can be

changed with GLUI_StaticText::set_text()

add_statictext, add_statictext_to_panel

Usage

GLUI_StaticText *GLUI::add_statictext(char *name);
GLUI_StaticText *GLUI::add_statictext_to_panel(GLUI_Panel *panel,
 char * name);

name - Text to display

panel - Panel to add static text to

Returns: Pointer to a new static text control

SI460 Computer Graphics GLUI API documentation (abridged)

Editable Text Boxes

Editable text boxes can be used to input plain text, integer values, or floating point

values. An EditText box designated for integer values will only accept numbers and a

preceding minus sign. An EditText box designated for floating-point values will accept

numbers, a minus sign, and a decimal point. One can jump ahead or back a word using

the Control key in conjunction with the Left or Right keys. Home and End will jump the

cursor to the first or last character. EditText controls support text selection using the

mouse, or using the Shift key in conjunction with the Left, Right, Control, Home and End

keys. The current text of an EditText box can be retrieved using

GLUI_EditText::get_text(). If the control stores an integer value, it can be retrieved

via GLUI_EditText::get_int_val(), or a floating-point value using

GLUI_EditText::get_float_val(). These can also be set using

GLUI_EditText::set_text(), GLUI_EditText::set_int_val(), or

GLUI_EditText::set_float_val().

add_edittext, add_edittext_to_panel

Usage

GLUI_EditText *GLUI::add_edittext(char *name,
 int data_type=GLUI_EDITTEXT_TEXT,
 void *live_var=NULL, int id=-1,
 GLUI_Update_CB callback= NULL);
GLUI_EditText *GLUI::add_edittext_to_panel(GLUI_Panel *panel, char *name,
 int data_type=GLUI_EDITTEXT_TEXT,
 void *live_var=NULL, int id=-1,
 GLUI_Update_CB callback= NULL);

name - Label to display left of text box

data_type - The type of input the EditText control will accept.

 The following values are accepted:

GLUI_EDITTEXT_TEXT - The default: regular text input

GLUI_EDITTEXT_INT - Integer input

GLUI_EDITTEXT_FLOAT - Floating-point input

live_var - If specified, this must be a pointer to either a character

 array [of length at least equal to sizeof(GLUI_String)],

 a variable of type int, or a variable of type float,

 depending on the value of data_type. The string, integer, or

 float will be modified when the user changes the text in the

 EditText control

id - If callback is defined, it will be passed this integer value

 when the text is changed

callback - Pointer to callback function to be called when text is

 changed. Callback will be passed the single int argument

 'id', listed above.

panel - Panel to add spinner to

Returns: Pointer to a new editable text control

SI460 Computer Graphics GLUI API documentation (abridged)

set_int_limits, set_float_limits

These functions define upper and lower limits on the integer or float values that an

editable text box can accept.

Usage

void GLUI_EditText::set_int_limits(int low, int high,

 int limit_type = GLUI_LIMIT_CLAMP);

void GLUI_EditText::set_float_limits(float low, float high,

 int limit_type = GLUI_LIMIT_CLAMP);

low - Lower bound for acceptable values

high - Upper bound for acceptable values

limit_type - How to handle out-of-bounds values. If GLUI_LIMIT_CLAMP,

 then out-of-bounds values are simply clamped to the lower

 or upper limit. If GLUI_LIMIT_WRAP, then values that are

 too low are set to the upper bound, while values that are

 too high are set to the lower bound. GLUI_LIMIT_WRAP is of

 limited use for editable text boxes, but can be used with

 spinners to provide continuous cycling over a range (e.g.,

 to continuously increase a rotation amount over the range

 0 - 360).

SI460 Computer Graphics GLUI API documentation (abridged)

Spinners

A spinner is an integer or floating-point editable text box with two attached arrows,

which increase or decrease the current value of the control. The arrows work in three

ways: click an arrow once to increase or decrease the spinner's value by a single step,

click and hold to continuously increase or decrease the spinner value, or click and drag

the mouse to increase and decrease the value as the mouse moves up and down. The rate

at which the spinner changes can be varied with the SHIFT and CONTROL keys. Hold

SHIFT while initially clicking an arrow to increase the step amount by a factor of 100, or

CONTROL to decrease the step amount to 1/100th its usual value. The current value can

be retrieved with either GLUI_Spinner::get_int_val() or

GLUI_Spinner::get_float_val(), depending on the type of data stored. It can be set

using GLUI_Spinner::set_int_val() or GLUI_EditText::set_float_val().

add_spinner, add_spinner_to_panel

Add a new spinner to a GLUI window.

Usage

GLUI_Spinner *GLUI::add_spinner(char *name,

 int data_type=GLUI_SPINNER_INT,

 void *live_var=NULL, int id=-1,

 GLUI_Update_CB callback= NULL);

GLUI_Spinner *GLUI::add_spinner_to_panel(GLUI_Panel *panel,

 char *name,

 int data_type=GLUI_SPINNER_INT,

 void *live_var=NULL, int id=-1,

 GLUI_Update_CB callback= NULL);

name - Label to display

data_type - The type of input the Spinner control will accept. The

 following values are accepted:

GLUI_SPINNER_INT - Integer input

GLUI_SPINNER_FLOAT - Floating-point input

live_var - If specified, this must be a pointer to either a variable of

 type int or a variable of type float, depending on the value

 of data_type. The integer or float will be modified when the

 user changes the value

id - If callback is defined, it will be passed this integer when

 the spinner's value is modified

callback - Pointer to callback function to be called when spinner's

 value is modified. Callback will be passed the single int

 argument 'id', listed above.

panel - Panel to add spinner to

Returns: Pointer to a new spinner control

SI460 Computer Graphics GLUI API documentation (abridged)

set_int_limits, set_float_limits

These functions define upper and lower limits on the integer or float values that an

editable text box can accept.

Usage

void GLUI_Spinner::set_int_limits(int low, int high,

 int limit_type = GLUI_LIMIT_CLAMP);

void GLUI_Spinner::set_float_limits(float low, float high,

 int limit_type = GLUI_LIMIT_CLAMP);

low - Lower bound for acceptable values

high - Upper bound for acceptable values

limit_type - How to handle out-of-bounds values. If GLUI_LIMIT_CLAMP,

 then out-of-bounds values are simply clamped to the lower

 or upper limit. If GLUI_LIMIT_WRAP, then values that are

 too low are set to the upper bound, while values that are

 too high are set to the lower bound. This can be used to

 provide continuous cycling over a range (e.g., to

 continuously increase a rotation amount over the range

 0 - 360).

set_speed

This function adjusts the rate at which the spinner changes when it is clicked or when the

button is held down. This function is used to adjust the spinner responsiveness to either

fast or slow machines. That is, for very fast machines, the speed may need to be set to a

value less than 1.0, to prevent the spinner from increasing or decreasing too quickly when

the button is held down. Likewise, for very slow machines or for applications with a slow

update rate, the speed may need to be set to some high value to increase the perceived

responsiveness of the interface.

Usage

void GLUI_Spinner::set_speed(float speed);

speed - Rate at which spinner changes. It defaults to 1.0.

 Higher values indicate faster change, and low values indicate

 slower change.

SI460 Computer Graphics GLUI API documentation (abridged)

Separators

Separators are simple horizontal lines that can be used to divide a series of controls into

groups.

add_separator, add_separator_to_panel

Adds a separator to a GLUI window

Usage

void GLUI::add_separator(void);

void GLUI::add_separator_to_panel(GLUI_Panel *panel);

panel - Panel (or rollout) to add separator to

SI460 Computer Graphics GLUI API documentation (abridged)

Example

#include <GL/glut.h>

#include "glui.h"

// prototypes and global variables here …

void main(int argc, char* argv[])

{

 // Initialize GLUT and create window

 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

 glutInitWindowPosition(50, 50);

 glutInitWindowSize(300, 300);

 int main_window = glutCreateWindow("GLUI test app");

 glutKeyboardFunc(myGlutKeyboard);

 glutDisplayFunc(myGlutDisplay);

 glutReshapeFunc(myGlutReshape);

 glutMotionFunc(myGlutMotion);

 glutMouseFunc(myGlutMouse);

 myGlutInit();

 // Create a GLUI user interface window and add controls

 GLUI *glui = GLUI_Master.create_glui("GLUI", 0);

 glui->add_statictext("Simple GLUI Example");

 glui->add_checkbox("Wireframe", &wireframe, 1, control_cb);

 GLUI_Spinner *segment_spinner =

 glui->add_spinner("Segments:",GLUI_SPINNER_INT, &segments);

 segment_spinner->set_int_limits(3, 60, GLUI_LIMIT_WRAP);

 GLUI_EditText *edittext =

 glui->add_edittext("Text:", GLUI_EDITTEXT_TEXT, text);

 glui->add_column(true); // Begin new column - 'true' indicates

 // a vertical bar should be drawn

 GLUI_Panel *obj_panel = glui->add_panel ("Object Type");

 GLUI_RadioGroup *group1 =

 glui->add_radiogroup_to_panel(obj_panel,&obj,3,control_cb);

 glui->add_radiobutton_to_group(group1, "Sphere");

 glui->add_radiobutton_to_group(group1, "Torus");

 glui->add_button("Quit", 0,(GLUI_Update_CB)exit);

 // Tell GLUI which window to recognize as the main gfx window

 glui->set_main_gfx_window(main_window);

 // Register the Idle callback with GLUI (instead of with GLUT)

 GLUI_Master.set_glutIdleFunc(myGlutIdle);

 // Now call the regular GLUT main loop

 glutMainLoop();

}

