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2D Transformations 

 

(Motivation) Example: 
 

I have a scene that has a Stop Sign in the foreground and one in the background. I can 

draw the nearest one using 8 vertices (8 calls to glVertex2f) 
 

 
 

I could also draw the far Stop Sign using 8 more calls to glVertex2f, but what I'd really 

like to be able to do is to tell OpenGL to just scale the first set of vertices, and then 

translate them. These are examples of transformations. 
 

Translation       Scaling          Rotation     

 

Translate in x by 
x

t     Scale in x by 
x

s       Rotate by θ  

Translate in y by yt     Scale in y by 
y

s  

 

xtxx +=′   xsxx ⋅=′       θθ sincos yxx −=′       

ytyy +=′   ysyy ⋅=′       θθ cossin yxy +=′      

 

ty 

tx 

θ  
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Shear in Y     Shear in X 

 

x remains unchanged    x depends linearly on original coordinates 

y depends linearly on original coordinates y remains unchanged 
 

xx =′      yshxx x ⋅+=′  

xshyy y ⋅+=′     yy =′  

If we represent a 2D point as a 2 × 1 (column) matrix, 
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… then we can express scaling, for example, as a matrix multiplication:  
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 is called the scale transformation matrix 

 

 (How would we scale only in  X, for example ?) 
 

 What about rotation? 
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Y-shear?       
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X-shear? 
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General shear: 
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Note that these transformations all have the form: 
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What about translation as a matrix multiplication? 
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If we represent a 2D point as a 3 × 1 (column) matrix,  
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… then a 2D transformation using matrix multiplication would require a 3 × 3 matrix: 
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For example, Scale: 
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 (in 2D there is no scale in z) 

 

and Rotate: 
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(rotation remains in the z = 0 plane) 
 

Let's look at translation again, using homogenous points and a 3 × 3 matrix: 
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It works! 
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So we can represent 2D tranformations using 2D homogenous points and 3 × 3 matrices. 

 

This is how OpenGL performs transformations: using matrix multiplication (which can 

be implemented in hardware, so it is very fast) and homogenous points. 

 

Now, OpenGL actually treats 2D as a special case of 3D: all 2D points are really points in 

3D with the z-coordinate = 0 ( glVertex2f(x,y) is the same as glVertex3f(x,y,0) ). 

 

A 3D homgenous point looks like: 
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But we can't multiply a 3 × 3 matrix with a 4 × 1 matrix … so how do we do 2D 

transformations? 

 

Fortunately, the idea extends directly to 3D: 

 

We can represent 3D transformations using 3D homogenous points and  4 × 4 matrices: 
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In OpenGL, a transformation is specified using: 

 

glTranslatef( tx, ty, tz ) for 2D, tz = 0  

 

glScalef( sx, sy, sz )  for 2D, sz = 1 

 

glRotatef( θ, ax, ay, az ) for 2D, the axis of rotation is the Z-axis, so 

      a 2D rotation is specified with 

glRotatef( θ, 0,0,1 ) 

 

These calls result in the corresponding 4 × 4 transformation matrix being generated: 
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Download the "transform" program and look at the display callback: note the call to 

glTranslatef(). This is an example of a modeling transformation: 

 

all glVertex geometry specified after this is translated by the given amount. 

 

Recall the OpenGL geometry pipeline diagram: 

Modeling transformation is one of the per-vertex operations. 

 

Look at the keyboard callback: note the call to glutPostRedisplay() when the 'r' key 

is pressed. 

 

Run the program. What happens to the display when the 'r' key is pressed? 

 

The translations seem to accumulate! 

 

Let's see if we can explain this mathematically. 
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Second translation: 
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… etc. 

 

But note that 
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i.e., transformations can be composited. 

 

 

 

 

 

Vertex 

data 

 

 

Per-vertex 

operations 

 

 

Framebuffer 

Geometry 

pipeline 

etc.etc.
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When you specify a sequence of transformations, OpenGL composites them into a 

ccuurrrreenntt  ttrraannssffoorrmmaattiioonn  mmaattrriixx, and then applies the resulting matrix to all subsequent 

vertices. 

 
 glTranslatef( * ); ⇒ T 

 glRotatef( * );  ⇒ TR 

 glScalef( * );   ⇒ TRS 

 

 glBegin( GL_LINES ); 

   glVertex2f( * );  ⇒ TRSv ⇒ T(R(Sv)) 

   … etc 

 

Note the result of the above sequence of transformations. Although specified in the code 

in the order T, R, S, the application to vertices is in the order Sv, R(Sv), T(RSv). 

 

Does the order of transformations matter? (Is matrix multiplication commutative?)  

 Yes!      No! 

 

 

Translate, then rotate 

 

 

 

 

Rotate, then translate 

 

 

 

 

OpenGL actually maintains a stack of 4 × 4 transformation matrices, initally containing 

the 4 × 4  identity matrix. Transformations are automatically composited with (multiplied 

by) the top matrix on the stack. The stack can be manipulated using: 

 

glPushMatrix() duplicates the top stack element (4 × 4 transformation matrix) 

glPopMatrix() deletes the top stack element (4 × 4 transformation matrix) 

 

Returning to the program: modify the display callback as follows. 

 
  glPushMatrix(); 

  glTranslatef(0.2,0,0); 

      glBegin( GL_LINE_LOOP ); 

    glVertex2f( -0.125, -0.5 ); 

    glVertex2f(  0.125, -0.5 ); 

    glVertex2f(  0.125,  0.4 ); 

    glVertex2f(  0.0,    0.5 ); 

    glVertex2f( -0.125,  0.4 ); 

  glEnd(); 

  glPopMatrix(); 

 

T 

T 
R 

R 
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Now run it as before, pressing the 'r' key several times. Each time you press the 'r' 

key, the display callback is called, and a call to glTranslatef is made - but the polygon 

is translated only once: can you explain why? 

 

OpenGL maintains multiple matrix stacks: 

 

 modeling/viewing (remember: at this point we're using the OpenGL default 

     view: looking from the origin down the -z axis. We will 

     change this when we get to 3D, and then it will make 

     sense why we treat modeling and viewing transformations 

     with the same stack) 

 projection 

 texture 

 

Because there are multiple stacks, one must specify which matrix is being composited: 

 

 glMatrixMode( GL_MODELVIEW ) (this is the default) 
 glMatrixMode( GL_PROJECTION ) 

 glMatrixMode( GL_TEXTURE ) (later) 

 

(Do Lab 6: 2D transformations) 

 

 

 

 


