
SI460 Computer Graphics

2D Transformations

(Motivation) Example:

I have a scene that has a Stop Sign in the foreground and one in the background. I can

draw the nearest one using 8 vertices (8 calls to glVertex2f)

I could also draw the far Stop Sign using 8 more calls to glVertex2f, but what I'd really

like to be able to do is to tell OpenGL to just scale the first set of vertices, and then

translate them. These are examples of transformations.

Translation Scaling Rotation

Translate in x by
x

t Scale in x by
x

s Rotate by θ

Translate in y by yt Scale in y by
y

s

xtxx +=′ xsxx ⋅=′ θθ sincos yxx −=′

ytyy +=′ ysyy ⋅=′ θθ cossin yxy +=′

ty

tx

θ

SI460 Computer Graphics

Shear in Y Shear in X

x remains unchanged x depends linearly on original coordinates

y depends linearly on original coordinates y remains unchanged

xx =′ yshxx x ⋅+=′

xshyy y ⋅+=′ yy =′

If we represent a 2D point as a 2 × 1 (column) matrix, 







=

y

x
P ,

… then we can express scaling, for example, as a matrix multiplication:

 








′

′
=









⋅

⋅
=
















=′

y

x

sy

sx

y

x

s

s
P

y

x

y

x

0

0

 








y

x

s

s

0

0
 is called the scale transformation matrix

 (How would we scale only in X, for example ?)

 What about rotation?

 








′

′
=









+

−
=















 −

y

x

yx

yx

y

x

θθ

θθ

θθ

θθ

cossin

sincos

cossin

sincos

Y-shear?

 








′

′
=









+⋅
=

















y

x

yshx

x

y

x

sh yy 1

01

X-shear?

 








′

′
=







 ⋅+
=

















y

x

y

shyx

y

xsh xx

10

1

General shear:

 








′

′
=









⋅+

⋅+
=

















y

x

shxy

shyx

y

x

sh

sh

y

x

y

x

1

1

SI460 Computer Graphics

Note that these transformations all have the form:

 








′

′
=









+

+
=

















y

x

dycx

byax

y

x

dc

ba

What about translation as a matrix multiplication?

 








+

+

dycx

byax
≠ 









+

+

y

x

ty

tx
 Can't do it! But …

If we represent a 2D point as a 3 × 1 (column) matrix,

















=

1

y

x

P (called a "homogenous 2D point")

… then a 2D transformation using matrix multiplication would require a 3 × 3 matrix:

















′

′

′

=

















++

++

++

=

































z

y

x

ihygx

feydx

cbyax

y

x

ihg

fed

cba

1

For example, Scale:

















=

















++

++

++

=

































1100

00

00

1100

00

00

y

x

y

x

y

x

ys

xs

yx

ysx

yxs

y

x

s

s

 (in 2D there is no scale in z)

and Rotate:















 −

100

0cossin

0sincos

θθ

θθ

(rotation remains in the z = 0 plane)

Let's look at translation again, using homogenous points and a 3 × 3 matrix:

































=

















++

++

++

=

















+

+

=

















++

++

++

=

































1100

10

01

100

10

01

11

y

x

t

t

yx

tyx

tyx

ty

tx

ihygx

feydx

cbyax

y

x

ihg

fed

cba

y

x

y

x

y

x

It works!

SI460 Computer Graphics

So we can represent 2D tranformations using 2D homogenous points and 3 × 3 matrices.

This is how OpenGL performs transformations: using matrix multiplication (which can

be implemented in hardware, so it is very fast) and homogenous points.

Now, OpenGL actually treats 2D as a special case of 3D: all 2D points are really points in

3D with the z-coordinate = 0 (glVertex2f(x,y) is the same as glVertex3f(x,y,0)).

A 3D homgenous point looks like:



















=

1

z

y

x

P (on the z = 0 plane,



















=

1

0

y

x

P)

But we can't multiply a 3 × 3 matrix with a 4 × 1 matrix … so how do we do 2D

transformations?

Fortunately, the idea extends directly to 3D:

We can represent 3D transformations using 3D homogenous points and 4 × 4 matrices:



















=

1

z

y

x

P Transformation matrix:



















ponm

lkji

hgfe

dcba

In OpenGL, a transformation is specified using:

glTranslatef(tx, ty, tz) for 2D, tz = 0

glScalef(sx, sy, sz) for 2D, sz = 1

glRotatef(θ, ax, ay, az) for 2D, the axis of rotation is the Z-axis, so

 a 2D rotation is specified with

glRotatef(θ, 0,0,1)

These calls result in the corresponding 4 × 4 transformation matrix being generated:



















1000

0100

010

001

y

x

t

t



















1000

0100

000

000

y

x

s

s

















 −

1000

0100

00cossin

00sincos

zz

zz

θθ

θθ

 Translation Scale Rotation

SI460 Computer Graphics

Download the "transform" program and look at the display callback: note the call to

glTranslatef(). This is an example of a modeling transformation:

all glVertex geometry specified after this is translated by the given amount.

Recall the OpenGL geometry pipeline diagram:

Modeling transformation is one of the per-vertex operations.

Look at the keyboard callback: note the call to glutPostRedisplay() when the 'r' key

is pressed.

Run the program. What happens to the display when the 'r' key is pressed?

The translations seem to accumulate!

Let's see if we can explain this mathematically.

First translation:



















+

+

=





































1

0

1

0

1000

0100

010

001

1

1

1

1

y

x

y

x

ty

tx

y

x

t

t

Second translation:



















+

+

=



















++

++

=



















+

+



















1

0

2

2

1

0

1

0

1000

0100

010

001

1

1

11

11

1

1

1

1

y

x

yy

xx

y

x

y

x

ty

tx

tty

ttx

ty

tx

t

t

… etc.

But note that



















+

+

=





































=























































1

0

2

2

1

0

1000

0100

2010

2001

1

0

1000

0100

010

001

1000

0100

010

001

1

1

1

1

1

1

1

1

y

x

y

x

y

x

y

x

ty

tx

y

x

t

t

y

x

t

t

t

t

,

i.e., transformations can be composited.

Vertex

data

Per-vertex

operations

Framebuffer

Geometry

pipeline

etc.etc.

SI460 Computer Graphics

When you specify a sequence of transformations, OpenGL composites them into a

ccuurrrreenntt ttrraannssffoorrmmaattiioonn mmaattrriixx, and then applies the resulting matrix to all subsequent

vertices.

 glTranslatef(*); ⇒ T

 glRotatef(*); ⇒ TR

 glScalef(*); ⇒ TRS

 glBegin(GL_LINES);

 glVertex2f(*); ⇒ TRSv ⇒ T(R(Sv))

 … etc

Note the result of the above sequence of transformations. Although specified in the code

in the order T, R, S, the application to vertices is in the order Sv, R(Sv), T(RSv).

Does the order of transformations matter? (Is matrix multiplication commutative?)

 Yes! No!

Translate, then rotate

Rotate, then translate

OpenGL actually maintains a stack of 4 × 4 transformation matrices, initally containing

the 4 × 4 identity matrix. Transformations are automatically composited with (multiplied

by) the top matrix on the stack. The stack can be manipulated using:

glPushMatrix() duplicates the top stack element (4 × 4 transformation matrix)

glPopMatrix() deletes the top stack element (4 × 4 transformation matrix)

Returning to the program: modify the display callback as follows.

 glPushMatrix();

 glTranslatef(0.2,0,0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(-0.125, -0.5);

 glVertex2f(0.125, -0.5);

 glVertex2f(0.125, 0.4);

 glVertex2f(0.0, 0.5);

 glVertex2f(-0.125, 0.4);

 glEnd();

 glPopMatrix();

T

T
R

R

SI460 Computer Graphics

Now run it as before, pressing the 'r' key several times. Each time you press the 'r'

key, the display callback is called, and a call to glTranslatef is made - but the polygon

is translated only once: can you explain why?

OpenGL maintains multiple matrix stacks:

 modeling/viewing (remember: at this point we're using the OpenGL default

 view: looking from the origin down the -z axis. We will

 change this when we get to 3D, and then it will make

 sense why we treat modeling and viewing transformations

 with the same stack)

 projection

 texture

Because there are multiple stacks, one must specify which matrix is being composited:

 glMatrixMode(GL_MODELVIEW) (this is the default)
 glMatrixMode(GL_PROJECTION)

 glMatrixMode(GL_TEXTURE) (later)

(Do Lab 6: 2D transformations)

