
SI460 Computer Graphics Double buffering

(Start on Homework #1 in class …)

Look at the example: single-buffering, no idle callback

 … trying to draw random rectangles, but only one is drawn?

 ⇒ the display callback is only being called ONCE.

 When does GLUT call the display callback? When the screen needs to be redrawn,

 for example, when we obscure (“damage”) and then expose the window (try it).

Look at the example: single-buffering, no idle callback, with re-display

 Inside the keyboard callback, every time we press the 'r' key we use

glutPostRedisplay() to tell GLUT to call the display callback … giving us a new,

random rectangle

Look at the example: single-buffering, with idle callback

 GLUT calls the idle callback this if no other events (keyboard, mouse, ...) are pending.

Calling glutPostRedisplay() from within the idle callback causes the display to be

updated (via the display callback) every time through glutMainLoop

 // init.cpp:

 void idle()

 {

 glutPostRedisplay();

 Sleep(50);

 }

 If we modify the code to just draw one rectangle ... we get "tearing" of the display

 idle finsihes faster than it takes to draw our rectangle => we see "partial" updates

Double buffering

We can use two color buffers to avoid this: a front buffer that is always displayed, and a back

buffer into which we draw. We simply clear the back buffer, draw our scene, swap what we

consider back and front buffers, and repeat.

Look at the example: double-buffering, with idle callback

 Look at drawing random rectangles first, then a single rectangle: no “tearing” - !

In GLUT we specify the use of one or two color buffers as part of graphics initialization:

 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);

 ===========

 or

 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

 ===========

Swapping buffers is accomplished with

 glutSwapbuffers();

Note that glutSwapbuffers() flushes the graphics pipeline, so glFlush() is not

needed.

SI460 Computer Graphics GLUT Mouse Event Handling

GLUT mouse callbacks

void glutMouseFunc (void (*func)(int button, int state, int x, int y));

void glutMotionFunc(void (*func)(int x, int y));

void glutPassiveMotionFunc(void (*func)(int x, int y));

Respectively:

 called when the user presses or releases a mouse button.

 called when mouse position changes while any mouse button is down.

 called when mouse position changes if all mouse buttons are up.

Parameter button indicates which button is down:

 GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, GLUT_RIGHT_BUTTON

Parameter state is either GLUT_UP or GLUT_DOWN.

Parameters x and y contain the location in window coordinates of the mouse cursor when the

event occured.

Callback function prototypes:

void mouse_btn(int button, int state, int x, int y);

 void btn_motion(int x, int y);

 void passive_motion(int x, int y);

Register with GLUT:

 glutMouseFunc(mouse_btn);
 glutMotionFunc(btn_motion);

 glutPassiveMotionFunc(passive_motion);

As with the keyboard callbacks, the status of the SHIFT, ALT, and CTRL keys when a

mouse event occurs can be retrieved from within a mouse callback, using
glutGetModifiers().

The number of mouse buttons available can be retrieved using

int glutDeviceGet(GLUT_NUM_MOUSE_BUTTONS);

SI460 Computer Graphics Lab 5 – Double Buffering, Mouse Events

Today's lecture discussed how GLUT handles mouse events, and introduced the idea of

double-buffering for animation.

Using the code from today's lecture as a guide, improve your Lab 4 (PONG I) program:

1. Tie movement of the right paddle to (passive) movement of the mouse instead of

controlling it using the arrow keys.

Note: mouse movement is reported in window coordinates, but the paddle is drawn in

world coordinates. A conversion from window-to-world coordinates is needed !

2. Further modify the code to use the idle callback and double-buffering.

