
SI460 Computer Graphics Coordinate systems, Viewport Mapping

How did you draw the PONG net?

 glBegin(GL_LINES);

 glVertex2f(0.0, 1.0);

 glVertex2f(0.0, -1.0);

 glEnd();

How did you determine the upper and lower y-coordinate?

⇒ by default when a GLUT window is opened the center of the window is at (0,0) and the

window is 2 × 2.

What would the display look like if I did this:

 glRectf(-1000.0, -1000.0, +1000.0, +1000.0);

 ????

Here’s what the demo program looks like, with the above call to glRectf:

 !!!!

Let's say this is window is 400 pixels x 400 pixels in size. How does OpenGL determine that

x = -1000 should be plotted at pixel 100 (horizontally) in the window?

SI460 Computer Graphics Coordinate systems, Viewport Mapping

Coordinate systems

We tend to think of individual things as having their own coordinate system. For example if

someone tells us both to "take a step forward", your position and my position would be

relative to our own individual "spaces", or coordinate systems.

Suppose we want to draw a scene that has several objects: a calculator, sitting on a desk,

inside a building, in a city somewhere. We would specify geometry using glVertex,

perhaps as a set of quads. For example, the top of the calculator could be drawn using:

 glBegin(GL_QUADS);

 glVertex3f();

 glVertex3f();
 glVertex3f();
 glVertex3f();
 glEnd();

Now, we could use this same quad for the floor

of the room:

 glBegin(GL_QUADS);

 glVertex3f();

 glVertex3f();
 glVertex3f();
 glVertex3f();
 glEnd();

… and also for the top of the desk:

 glBegin(GL_QUADS);

 glVertex3f();

 glVertex3f();
 glVertex3f();
 glVertex3f();
 glEnd();

But what actual values do we use for the vertex coordinates in each of these cases? That

depends on each object's individual coordinate system.

SI460 Computer Graphics Coordinate systems, Viewport Mapping

We might think of the origin of the room “room coordinate system” as being at the center of

the floor, of the “desk coordinate system” as being in the center of the top, and the

“calculator coordinate system” at one of its corners:

This allows us to specify geometry in terms of

the vertex coordinates in each object's own

object coordinate system, but to compose all of

the objects into a scene we must use a common

coordinate system.

This is done via modeling transformations

(translation, rotation, and scaling - which we'll

discuss later) that transform object coordinates

into a world coordinate system.

For now we'll just model everything directly in world coordinates (not object coodinates),

calling glVertex* with the appropriate values.

The object and world coordinate systems, and modeling transformations, are not the only

coordinate systems and transformations we'll have to deal with in displaying a scene. For

example, we must choose a viewpoint from which to view the above scene, determine what

is actually visible from where we're looking, and decide where on the screen we want the

image to appear.

Object (model) coordinates - individual object geometry

World (eye) coordinates - scene with one or more objects

Camera (clip) coordinates - vertices visible in the view volume

Window coordinates - drawn on a 2D screen

z

y

x

x

y
z

x

y
z

SI460 Computer Graphics Coordinate systems, Viewport Mapping

Assuming we know the vertex coordinates of all the geometry in our scene, to display the

scene on a computer screen we must:

1. Specify where we want to look from and to (viewing)

2. Specify what part of the world we want to see (projection)

3. Convert from world coordinates to window coordinates (viewport mapping)

Accomplishing these steps is analagous to using a camera to photograph a scene.

 Modeling

 Viewing Projection Viewport mapping
Object coordinates → Eye (world) coordinates → Clip coordinates → Window coordinates

SSeett uupp tthhee ttrriippoodd

aanndd aaiimm tthhee

ccaammeerraa aatt tthhee sscceennee

AArrrraannggee tthhee sscceennee

SSeelleecctt aa lleennss

aanndd aaddjjuusstt

tthhee zzoooomm

DDeetteerrmmiinnee

hhooww bbiigg tthhee

eennllaarrggeemmeenntt

wwiillll bbee

VViieewwiinngg

MMooddeelliinngg

PPrroojjeeccttiioonn

VViieewwppoorrtt mmaappppiinngg

eeyyee

SI460 Computer Graphics Coordinate systems, Viewport Mapping

1. Viewing (where we want to look from and to)

For simplicity, at this point we'll initially assume our eyes

are at the world coordinate system origin and we are

looking directly down the negative Z axis (this is the

default for OpenGL). The positive x-axis points to the

right, the positive y-axis points up, and the positive z-axis

points out of the screen. This is the right-handed world

coordinate system assumed by OpenGL.

2. Projection (how much of the world we want to see)

We'll initially confine ourselves to 2D. To specify what part of

the world to display, we use an orthographic projection:

 gluOrtho2D(left, right, bottom, top)

3. Viewport mapping (world coordinates to window coordinates)

Displaying our scene in a window on the display device requires a transformation to convert

object geometry (specified in world coordinates) to window coordinates.

The viewport specifies what portion of the on-screen window our world coordinates will be

mapped to:

Note the difference in the y-axis of the window coordinate system assumed by GLUT and by

OpenGL.

x

y

(left, bottom)

(right, top)
window opened by

the window system

world coordinate system
 screen

"viewport"

y = 0

GLUT

 OpenGL

y = 0

+y

+y

+x
 window coordinate system

projection

 screen coordinate system

x

y

z

-z

x

y

(left, bottom)

(right, top)

SI460 Computer Graphics Coordinate systems, Viewport Mapping

Viewport mapping involves three steps:

1. Translate the

 world coordinate window

 to the world coordinate origin.

 gluOrtho2D(left, right, bottom, top)

 () ()bottom,left, −−=′′ yxyx

2. Scale the window to the size of the viewport.

 glViewport(vpl, vpb, vpw, vph)

 ()

′′=′′′′

bottom-top

vph
,

left-right

vpw
, yxyx

 () () ()

−−=′′′′

bottom-top

vph
,

left-right

vpw
, bottomyleftxyx

3. Translate to the viewport origin.

() ()vpb,vpl, +′′+′′=′′′′′′ yxyx

()
left-right

vpw
leftvpl −+=′′′ xx

()
bottom-top

vph
bottomvpb −+=′′′ yy

x

y

(right-left, top-bottom)

(0, 0)
x

y

(right, top)

(left, bottom)

(x, y)

(x', y')

vpw

vph

right-left

top-bottom

(x', y')

(x'', y'')

(x''', y''')

vpl

vpb

SI460 Computer Graphics Coordinate systems, Viewport Mapping

VPmappingExample code: Look at view.h, render.cpp

Size of the window on the screen:
 glutInitWindowSize(width, height)
 glutInitWindowSize(400, 400)

Viewport:
 glViewport(vpl, vpb, vpw, vph)

 glViewport(100, 50, 200, 300)

2D Orthographic projection window:
 gluOrtho2D(left, right, bottom, top)
 gglluuOOrrtthhoo22DD((--1100..00,, 9900..00,, --2200..00,, 8800..00))

 Example calculations:

 Transform the top right corner of the 2D view from world

 coordinates to viewport coordinates.

 (x , y) = (90 , 80) → (?? , ??)

()
left-right

vpw
leftxvplx −+=′′′ ()

bottom-top

vph
bottomyvpby −+=′′′

400

400

200

300

100

50

(90, 80)
(300, 350)

()()
()

300
100

200
100100

1090

200
1090100

=

+=

−−
−−+=′′′x

x

y

(9900,, 8800)

(--1100,, --2200)

100

100

()()
()

350
170

300
17050

9080

300
908050

=

+=

−−
−−+=′′′y

