
SI460 Computer Graphics 12-Week Exam - KEY

1 of 3

You should draw a picture where appropriate, but your picture should not take the place

of clear, informative text. Unless the question explicitly asks for it, there should be no

need to write any source code in your answers. Read the questions carefully and answer

the question that is asked ... ATQ!

1. (10 pts) What did you learn about “graphics programming” using OpenGL, in

completing Project #1? (This is a wide-open question, with no incorrect answer, unless

your answer does not reflect thought).

Any reasonable, thoughtful answer is acceptable.

2. (10 pts) (a) What is a display list? (b) Give an example of when and why you would

use a display list, (c) Give an example of when and why you would not use a display list.

(a) A display list is a collection of pre-compiled graphics commands that resides in

display memory, executed by the display processor to off-load the CPU. (b) It should be

used for efficiency purposes (i.e., better frame rate) when drawing complex objects, or as

a means of organizing the drawing of hierarchically structured objects, if the display list

mechanism supports such. (c) There is some overhead involved in executing a display

list, however, so it should not be used for drawing simple objects/shapes.

3. (10 pts) Give an OpenGL function call that establishes a perspective projection:

 gluPerspective(fovy, ar, near, far);

4. (10 pts) Draw and completely label an illustration of the view volume defined by your

answer in 3. Include the COP and view plane in your drawing.

5. (10 pts) Give an OpenGL function call that establishes a parallel projection:

 glOrtho(left, right, bottom, top, near, far);

COP
h

w
ar =

h

w

near

far

COP fovy

view
 plane

SI460 Computer Graphics 12-Week Exam - KEY

2 of 3

6. (10 pts) Draw and completely label an illustration of the view volume defined by your

answer in 5. Include the DOP and view plane in your drawing.

7. (10 pts) Three methods of visible surface determination are Z-buffering, backface-

culling, and:

Depth sorting ("painter's algorithm")

Binary space partitioning

8. (10 pts) Using an illustration, thoroughly explain how backface-culling works for

visible surface determination:

near far

bottom

top

left

right

DOP

view
 plane

N
r

N
r

Front-facing (visible)

Back-facing

(not visible)

Viewer

V
r

For front-faces: 0<⋅ NV
rr

.

For back-faces: 0≥⋅ NV
rr

.

Back-face culling:

SI460 Computer Graphics 12-Week Exam - KEY

3 of 3

9. (10 pts) Thoroughly explain how Z-buffering works for visible surface determination:

Each pixel on the screen corresponds to a

memory location in a framebuffer that is

logically divided into a color buffer and a Z-

buffer. For each visible point on an object that

projects onto a pixel, the color buffer contains

the color of the point and the Z-buffer contains

its distance from the viewer (z, or depth). More

distant points have larger depth values.

With nothing drawn, the Z-buffer is initially

cleared to a large value. A depth test is then

performed for each point on every object that

projects onto a pixel: if its depth value is

smaller than the value in the Z-buffer, the

object's color value at that point is written to

the color buffer and its depth value is written to

the Z-buffer.

In the example to the left, assume the Z-buffer

is cleared to 1.0, the front faces of the red and

blue objects have depths z = 0.5 and z = 0.7. Consider drawing only the front faces, red

first, then blue. Since 0.5 (red object) < 1.0 (Z-buffer), red is written to the color buffer

and 0.5 is written to the Z-buffer. For the blue object: only pixels for which 0.5 < z < 1.0

will result in blue being written to the color buffer and 0.7 being written to the Z-buffer.

10. (10 pts) (a) To what do minification and magnification refer? (b) What are two ways

of handling texture coordinates that are outside the range [0.0 1.0] ?

a. Scaling due to difference in size between texels and pixels.

 minification: pixels map to an area bigger than one texel

 magnification: pixels map to an area smaller than one texel

b. clamping and repeating

color buffer

depth buffer

framebuffer

1.0

1.0

1.0

1.0

1.0 1.0 1.0

0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

1.0

1.0

0.7

0.7

0.7 1.0 1.0

0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

