
int *n;

Give an example of a compile time error. scan(“%i”, n)

Give an example of a link time error. scan(“%i”, n);

Give an example of a runtime error. scanf(“%i”, n);

What’s the difference between a program and a process?

 Program: executable instructions (and possibly data) in a disk file.

 Process: program loaded into memory.

What are the parts of a program image on disk?

 text, initialized data

What are the parts of a process image in memory?

 text, (initialized) data, BSS (uninitialized data), heap, stack

What do we mean by multiprogrammed ?

 A system supporting multiple processes that can share resources.

Label this process state diagram:

Describe these signals:

 SIGCHLD sent to parent process when child terminates

 SIGINT sent by shell to foreground process when ^C entered

 SIGUSR1 user-defined

 SIGKILL terminates a process. Cannot be caught or ignored

 SIGTERM terminate a process ‘politely’: can be caught and ignored.

 SIGALRM sent by OS when timer expires

 All can be sent by the shell: $ kill –INT pid

 $ kill –SIGINT pid

 $ kill -2 pid

READY RUNNING

WAITING

TERMINATE CREATE

DISPATCH

TIMER RUNOUT

EVENT

REQUEST

EVENT

COMPLETE

In what ways can a user process can receive information …

 From the shell via command-line arguments.

 example: $ mmame –min –max

 From a resource file when the process starts up.

 example: /bin/bash reads .bashrc

 From a file.

 example: read from a regular file or a pipe

 From the OS via a system call return value.

 example: fork() returns -1 (failure), pid of child, or 0

 From the OS via system call parameters.

 example: struct stat s;

stat(“foo”, &s);

 From the OS via shell environment variables.

 example: getenv(“PWD”)

 From the OS via a signal.

 example: SIGFPE received on divide-by-zero

 From another process via a signal.

 example: kill(getppid(), SIGUSR1);

 From another process as a result of a fork():

 example: child gets parent’s open file descriptors

 example: child gets a copy of parent’s in-scope variables

 From another process via shared variables.

 From another process via a semaphore.

 example: synchronization information – process can proceed past a

 wait(s)

In what ways can a user process can pass information to the OS?

 Return value from function main(): return 0;

 By passing values in a system call or library function call:

 example: _exit(value); // system call

 example: exit(value); // library function

 example: printf(“%i”, n); // library function

Through environment variables:

 example: putenv(“PATH=thisdir”);

 execlp(“foo”, “foo”, NULL);

What is a race condition?

 In a multi-programmed system, a condition where behavior depends on

execution order.

Why are race conditions possible?

 The order of execution in a multiprogrammed system is non-deterministic:

context switches can occur at any time, due to:

User process gives up the CPU intentionally:

pause() system call - wait for any signal

sleep(), usleep() – wait for SIGALRM

User process makes an IO request, causing it to block

OS scheduling algorithm: timer runout

Hardware traps: e.g., illegal instruction, divide-by-zero

What is an atomic operation?

 One that can’t be interrupted: it will complete before a context switch can

occur

What is a synchronization primitive?

 A mechanism for ordering execution that relies on an atomic operation.

What do we mean by “cooperating processes”

 Multiple processes that must coordinate their execution sequence, or that

have access to shared resources.

What is a critical section?

 A section of code that accesses resources shared by cooperating processes.

What is mutual exclusion?

 A requirement that only one process at a time is allowed access a shared

resource.

What is the critical section (CS) problem?

 That of ensuring mutual exclusion.

What’s the general structure of cooperating processes?

 ENTRY <- code indicating a process wants to enter its CS

 critical section

 EXIT <- code indicating a process is has left its CS

 remainder

What is required for a valid solution to the critical section problem?

 Mutual exclusion – only one process at a time can be executing in a

 critical section

 Progress - a process not in a critical section can’t keep

 another out of a critical section

 Bounded wait - there is an upper limit on the time a process can be

 held in its ENTRY section

In general, the critical section problem may be solved by what means?

 Algorithm (software) - e.g., Dekker, Peterson

 Synchronization primitive

 Disabling interrupts

How can disabling interrupts be used to solve the critical section problem?

Mutual exclusion from a critical section requires that only one process at

a time can be executing in its critical section. Disabling interrupts

prevents context switching. So for the duration that interrupts are

disabled, no other process can enter its critical section, since no other

process can run.

Why is it a bad idea to let a user-process disable interrupts?

1. Defeats the purpose of multiprogrammming.
2. Programmer error may result in them never being re-enabled (e.g., due to

a logic error, or program crash)

What is a semaphore?

 A semaphore is a synchronization primitive provided by an OS. It consists

of a shared variable, two atomic operations, and a process queue.

What is the difference between a counting semaphore and a binary semaphore?

 A counting semaphore initialized to N allows N processes to access the

shared resource. A binary semaphore is a counting semaphore with N = 1.

Describe the two semaphore operations, wait and post:

 Binary Counting

 wait(s) if(s == 1) s = 0; s--;

 else block(); if(s < 0) block();

 post(s) if(none blocked) s = 1; s++;

 else wakeup(); if(s <= 0) wakeup();

 s < 0 ⇒ |s| == # processes

 blocked on s

If you just want mutual exclusion, will a binary semaphore suffice?

 Yes: the ‘shared resource’ is ‘entry to the critical section’.

 A binary semaphore will allow only one process to access the shared

 resource, i.e., enter the critical section.

Show how a semaphore can be used to synchronize two processes, such that P0

executes statement S0 before P1 executes statement S1:

 Binary semaphore s = 0;

 P0 P1

 . .

 . .

 S0 wait(s) <- P1 blocks until s = 1

P0 sets s to 1 -> post(s) S1

 . .

 . .

What is an exit handler?

 A function to be called by a user process when it terminates, typically to

do some final ‘cleanup’ (e.g., de-allocate memory, …)

 It is registered using atexit().

 Exit handlers are called in the reverse order of registration.

What is a signal handler?

 A function to be called by a user process on receipt of a signal.

 It is registered using signal().

Describe the effect of dup(fd)

 File descriptor fd is duplicated on the lowest available descriptor.

Describe the effect of dup2(fd, onto)

 ‘onto’ is closed. fd is duplicated on ‘onto’.

Describe the effect of pipe(fd)

 A one-way ‘communication channel’ is opened, such that fd[1] can be written

to, and fd[0] can be read from.

