

IC221 Systems Programming 6 Week Exam

� Calculators are not allowed.

� This exam is OPEN BOOK, CLOSED NOTES.

� Assume all source code is syntactically correct. Fill in your name and

section number below.

� $> is used as a bash shell prompt.

NAME: ANSWER KEY SECTION:_____________________

IC221 Systems Programming 6-Week Exam Name: ANSWER KEY

1) What do we mean by the phrase “the shell” ?

The shell is a program that functions as a command interpreter.

It provides an interface between the user and the operating system.

2) What is a “program” ?

A program in an executable file on disk.

3) What is a “process” ?

A process is an instance of a program in memory, in some state of

execution.

4) Assume these directories exist in a filesystem whose root is home,

and that user m101234’s current directory is classes.

Write two different bash shell command lines that use cd to switch to

the labs directory:

a) cd ../labs

b) cd /home/m01234/labs

home

m101234 m101010 m102030

classes labs hws

IC221 Systems Programming 6-Week Exam Name: ANSWER KEY

5) In class we discussed these ways of getting data into a “program”:

stdin

command-line arguments

environment variables

For each of the following scenarios state which one of the above three

is most appropriate, and briefly explain why.

a) You are writing a spell-checking program that will output a certain

number of correct words for each potentially misspelled word it finds

in a text file. You want the user to specify this number – for example,

the user might specify that the program suggests three correct words

from which to choose to replace the suspicious one. Should your program

get that number from stdin, the command-line or an evironment variable?

NOT stdin: the program is probably written to read from stdin the

text of the file to be spell-checked, which allows, for example,

piping the stdout of another program to this program's stdin, and

allows redirecting to stdin from a file. Having to read this option

from stdin would interfere with this behavior.

command line (for example: spell -s 3 file.txt) because I may discover

that a certain number of suggested words is not enough, and have to re-

run a spell check. It would be more tedious to have to change an

environment variable to do so.

environment variable (for example: export NSUGGEST=3) because I have

become comfortable with a certain number of suggested words and don't

want to be bothered by having to specify it each time on the command

line.

b) For the same program as in a), the default behavior is to assume

American spellings, but the user should be able to indicate that

British spellings be used. For example, if the program was used to

check this exam, it might change the word behavior to behaviour. From

where should the program get the option to switch from the default

behavior and use British spellings instead: stdin, the command-line or

an evironment variable?

environment variable (for example: export SPELLINGS=BRITISH) because I

may typically always work with British authors.

command line (for example: spell -l B file.txt) because I may only

rarely need to use other than the default behavior, but it's still

possible.

but NOT stdin (for the same reason as given in 5a).

c) You're writing a program to convert an arbitrary number of 2D points

back and forth between cartesian coordinates [x, y] and polar

coordinates [r, θ]. Should your program get the points from stdin, the

command-line or an evironment variable?

stdin, because the program is written to convert an arbitrary number of

points. An environment variable can store only one value, so multiple

points could not be given using that mechanism.

command line *could* be used, but it would be tedious to have to

specify any more than a few points.

but not an environment variable: which can store only one value

IC221 Systems Programming 6-Week Exam Name: ANSWER KEY

d) For the same program as in c), where should the conversion direction

come from (i.e., cartesian-to-polar or polar-to-cartesian): stdin, the

command-line or an evironment variable?

command line (for example: convert -d p) because it is just as likely

that conversions need to go one way or the other

but NOT stdin (for the same reason as given in 5a)

Using an environment variable to indicate a "default direction" would

not make sense as changing the direction would be tedious to

accomplish. It might make sense if there was also a command line option

to specify a different direction, i.e., override the default behavior.

6) Why does a bash script start with #!/usr/bin/bash ?

The first two characters are the "magic number" which in this case

indicates that this is an executable file must be *interpreted*.

The remainder of the line is the interpreter to be used.

7) Given this defintition of struct utimbuf and the subsequent

declarations:

struct utimbuf {

 time_t actime; /* access time */

 time_t modtime; /* modification time */

};

struct utimbuf U;

struct utimbuf *P = &U;

State the type for each of the expressions below, or state if it is an

invalid expressions. If it is invalid, explain why. The first one is

done for you:

a) &U pointer to struct utimbuf

b) U.actime time_t

c) U->actime not valid: U is not a pointer

d) P.actime not valid: P is a pointer

e) P->actime time_t

f) *P struct utimbuf

IC221 Systems Programming 6-Week Exam Name: ANSWER KEY

8) Given the above struct type definition and variable declarations,

show how you would use the system call below to change the timestamp on

the file "foo.txt" to values you had previously stored in U.

 int utime(const char *filename, const struct utimbuf *buf);

 utime("foo.txt", &U);

 or

 utime("foo.txt", P);

9) Match the bash symbol on the left with its meaning on the right:

Ans

9 a) .. (dot-dot) 1) redirect stdin

5 b) $() 2) run this process in the background

8 c) . (dot) 3) home directory

7 d) $(()) 4) redirect stdout

11 e) ? 5) value of a shell variable

10 f) $? 6) most recent shell command

2 g) & 7) value of an arithemtic expression

4 h) > 8) current directory

6 i) !! 9) parent directory

3 j) ~ 10) return value of program run by this shell

1 k) < 11) matches any single character except . (dot)

10) Write the output of this sequence of shell commands:

 Output:

$> foo=bar a) no output

$> echo foo b) foo

$> echo $foo c) bar

$> foo d) error message

$> foo=’echo foo’ e) no output

$> echo $foo f) echo foo

$> $foo g) foo

IC221 Systems Programming 6-Week Exam Name: ANSWER KEY

11) What does the following bash script do?

#!/bin/bash

script for question X

delete=echo lists all of the files in the

for something in * Ans: current directory that do not

do start with . (dot)

 $delete $something

done

12) Here’s a very simple C program:

// foo.c

int main()

{

 return 0;

}

What is created by each of these two shell commands:

$> gcc –c foo.c a) foo.o

$> gcc –o foo foo.c b) foo

13) Assume this was entered on the bash shell command line:

$> grep MIN nfl_QB2007.txt | cut –f1

a) State how many programs appear in that command line, and list them.

Two(2): grep, cut

b) State how many arguments are passed to the grep program by the

shell, and list them.

Three (3): grep, MIN, nfl_QB2007.txt

c) State how many files are opened as a result of this command, and

list them.

Six (6): The shell opens the files grep, cut

 The OS opens the files stdin, stdout, stderr

 grep opens nfl_QB2007.txt

