
IC221 Systems Programming HW13 ANSWER KEY

1. Using the textbook or the UNIX man pages to find your answer, indicate what each of

the following does.

a. setbuf(stdout, NULL); Unbuffers stdout so writes occur immediately.

b. fputc('x', stdout); Writes the character 'x' to stdout

2. Show how you would convert this stream into a file descriptor:

FILE *ifp = fopen("foo.txt", "r");

int fd;

fd = fileno(ifp);

3. Compile this source code, run it and explain the output.

Output:

Output:

$ race

I AM THE PARENT

I AM THI AEM THE C

PHAREILND

TI A

M THE CIHILD

I AM THE CHILD

I AM THE CHILD

I AM THE CHILD

AM THE PARENT

I AM THE PARENT

I AM THE PARENT

Explanation: this is an example of

a race condition, where program

output/behavior depends on order

of execution.

Both processes, parent and child,

are writing to stdout which has

been unbuffered (writes occur

immediately). Output from both

processes is interleaved because a

process does not get to finish its

for() loop before the other

process begins executing.

// race.c
#include <stdio.h> // fprintf, setbuf, fputc
#include <stdlib.h> // exit
#include <string.h> // strlen
#include <sys/types.h> // pid_t, fork

void char_at_a_time(char *str);

int main()
{
 int i;
 pid_t pid;

 setbuf(stdout, NULL);
 pid = fork();

 if(pid == -1)
 {
 fprintf(stderr, "Couldn't fork\n");
 exit(1);
 }

 for(i = 0; i < 5; ++i)
 {
 if(pid == 0)
 char_at_a_time("I AM THE CHILD\n");
 else
 char_at_a_time("I AM THE PARENT\n");
 }

 exit(0);
 }

void char_at_a_time(char *str)
{
 int i, n = strlen(str);

 setbuf(stdout, NULL);

 for(i = 0; i < n; ++i)
 fputc(str[i], stdout);
}

IC221 Systems Programming HW13 ANSWER KEY

4. The printer in MI316 is named mich316bw. If you were using the shell command line

to print a file named ans.txt to that printer, you might do something like this:

$ lpr -P mich316bw ans.txt

Using the declarations below as needed, show how you would call each different version

of exec to accomplish the same thing as is done on the command line above. Note that

you will need to find out the full pathname to the lpr program, and also the name of the

'default printer' environment variable.

char *args[] = { “lpr”, “-P”, “mich316bw”, “ans.txt”, NULL };

char *envp[] = { “PRINTER=mich316bw”, NULL };

eexxeeccllpp((““llpprr””,, ““llpprr””,, ““--PP””,, ““mmiicchh331166bbww””,, ““aannss..ttxxtt””,, ((cchhaarr**))00));;

eexxeeccll ((““//uussrr//uuccbb//llpprr””,, ““llpprr””,, ““--PP””,, ““mmiicchh331166bbww””,, ““aannss..ttxxtt””,, ((cchhaarr**))00));;

execvp(args[0], args);

execv (“/usr/ucb/lpr”, args);

execle(“/usr/ucb/lpr”, “lpr”, “-P”, “mich316bw”, “ans.txt”, (char*)0, envp);

eexxeeccvvee((““//uussrr//uuccbb//llpprr””,, aarrggss,, eennvvpp));;

