
IC221 Systems Programming Concurrency

Concurrency: a property of systems that permit resources to be shared. Concurrency applies both to

systems where execution is interleaved (multiprogramming) or overlapped (multi-processing) in time.

Concurrent use of shared resources can lead to unpredictable system behavior if race conditions occur.

A race condition is one in which behavior depend on the order of execution.

Order of execution is generally non-deterministic: we can’t predict which process will execute next.

Illustration: two processes, P0 and P1

 P0 P1
 if(n == 0) n = n + 1;

 a[n] = x;

 int n = 0; // a variable shared by P0 and P1

 time P0 run, P1 ready value of n

 | P0: if(n == 0) 0

 | Context switch

 | P1: n = n + 1 1

 | Context switch

 ▼ P0: a[1]=x ... not a[0] = x !!

P1

P2

P3

P4

CPU1

CPU2

time

READY RUNNING

WAITING

TERMINATE CREATE

DISPATCH

TIMER RUNOUT

EVENT

REQUEST

EVENT

COMPLETE

IC221 Systems Programming Concurrency

Example 2: “Producer-Consumer” cooperating processes that fill/empty a buffer

Buffer of size = n

int item_count = 0; // shared

item_type buffer[n]; // shared

int next_in = 0;

int next_out = 0;

Buffer is full if item_count == n

Buffer is empty if item_count == 0

 Producer Consumer

1 while(1) 8 while(1)

 { {

2 item = produce();

3 while(item_count == n) 9 while(item_count == 0)

4 ; // do nothing: buffer full 10 ; // do nothing: buffer empty

5 buffer[next_in] = item; 11 item = buffer[next_out];

6 next_in = (next_in + 1) % n; 12 next_out = (next_out + 1) % n;

7 item_count++; 13 item_count--;

 14 consume(item);

 } }

Note that:

• Consumer won’t comsume if item_count == 0

• Producer won’t produce if item-count == n

• Producer/consumer never access same buffer location (next_in ≠ next_out)

Looks like a pretty good implementation, no ??? Nope … problem is with ++++ and ----

In assembler these operations are implemented (something like): LOAD A, item_count

 INCR A

 STORE item_count, A

Suppose at some point the shared variable item_count == 5, and the execution sequence is:
 7 item_count++ (6)

 13 item_count-- (5) ... we expect item_count to have value 5

Producer: LOAD A, item_count ⇒ A = 5, item_count = 5

 INCR A ⇒ A = 6, item_count = 5

Context switch: register A is saved (6)

Consumer: LOAD A, item_count ⇒ A = 5, item_count = 5

 DECR A ⇒ A = 4, item_count = 5

 STORE item_count, A ⇒ A = 4, item_count = 4

Context switch: register A is restored (6)

Producer: STORE item_count, A ⇒ A = 6, item_count = 6

 -------------- WRONG!

Why? Both processes can modify item_count, but in what order? (race condition exists).

next_in

next_out

item_count

buffer

IC221 Systems Programming Concurrency

General structure of cooperating processes:

 ENTRY <-- code identifying we need to modify shared resource

 critical section <-- code that modifies shared resource

 EXIT <-- code indicating we’re done modifying

 remainder

The critical section problem is that of controlling access to shared resources.

A solution to the critical section problem must satisfy three criteria:

• Mutual exclusion: (“mutex”): only one process can be executing in a critical section

• Progress: a process not in a critical section can’t keep another from entering a critical section

• Bounded wait: a process can’t be kept in its entry section forever

Solutions can be found by algorithm (software), in hardware, or through OS mechanisms.

Lock variable Shared variable (a “lock”) initialized to 0

 Lock must be open (0) for a process to enter its critical section

 Lock is locked (1) when any process is in its critical section

 Lock is opened (0) when a process leaves its critical section

Example:
int lock = 0; // shared

 P0 P1

1 while(1) 7 while(1)

 { {

2 while(lock == 1) 8 while(lock == 1)

3 ; 9 ;

4 lock = 1; 10 lock = 1;

5 // critical section 11 // critical section

6 lock = 0; 12 lock = 0;
 } }

Will this work?

 1 (P0)

 2 (P0) lock ≠ 1 ⇒ P0 can enter

 ... context switch

 7 (P1)

 8 (P1) lock ≠ 1 ⇒ P1 can enter

10 (P1) lock = 1

... context switch

 4 (P0) lock = 1

 5 P0 in critical section ----+

... context switch |----> both processes in critical section!

11 P1 in critical section ----+

Why does this not work? … because the two steps 2 and 4, or 8 and 11, (test value, set value) can be

interrupted.

IC221 Systems Programming Concurrency

Alternation Shared variable “turn” initialized to 0 or 1

 Enter if it is my turn to do so

 Give other process a turn when this process leaves critical section

int turn = 0; // shared
 P0 P1

1 while(1) 7 while(1)

 { {

2 while(turn != 0) 8 while(turn != 1)

3 ; 9 ;

4 // critical section 10 // critical section

5 turn = 1; 11 turn = 0;

6 remainder 12 remainder
 } }

Does mutex hold? Assume P0 is in critical section.
 ⇒ turn == 0

 ⇒ P1 can’t get past line 8

 ⇒ mutex holds!

Is progress satisfied? Suppose P0 has a very short remainder

 Suppose P1 has a very long remainder.

 P1 enters and leaves (turn == 0), and begins its very long remainder

 P0 enters and leaves (turn == 1), and finishes its very short remainder

 P0 must now wait (turn != 0)

 ⇒ P1 not in it’s critical section, but it is keeping P0 out

 ⇒ progress fails

What’s the problem? P0 could enter if it “knew” P1 was not in its critical section … but all P0 knows is

that it’s not P0’s turn. Can we just keep track of who’s in the critical section?

int flag[2] = {0}; // shared. flag[i] = 1 if Pi ready to enter

 P0 P1

1 while(1) 8 while(1)

 { {

2 flag[0] = 1; 9 flag[1] = 1;

3 while(flag[1] == 1) 10 while(flag[0] == 1)

4 ; 11 ;

5 // critical section 12 // critical section

6 flag[0] = 0; 13 flag[1] = 0;

7 remainder 14 remainder
 } }

Mutex? Progress?
 2 (P0) flag[0] = 1; 2 (P0) flag[0] = 1;

10 (P1) while(flag[0] == 1) ... context switch

 ⇒ P1 can’t enter 9 (P1) flag[1] = 1;

 ⇒ mutex holds! 10 (P1) while(flag[0] == 1) // P1 waits

 ... context switch
 3 (P0) while(flag[1] == 1) // P0 waits

 ⇒ both waiting, progress fails

IC221 Systems Programming Concurrency

Peterson’s Algorithm

int flag[2] = {0}; // shared

 int turn = 1; // shared

while(1)

{

 flag[me] = TRUE; // indicate I want to enter

 turn = other; // but let other enter if they want to

 while(flag[other] && turn == other) // wait for other to leave

 ;

 // critical section

 flag[me] = FALSE; // I’m out of the critical section

 remainder

}

Mutex and progress can be shown.

Peterson’s algorithm as shown works for two (2) cooperating processes … it can be extended to handle

any number. But it is inefficient! Why?

 while(condition) this loop is called a “busy wait”. When this process gets the CPU

 ; // do nothing it does nothing but repeatedly check ‘condition’ (i.e., it is spinning

 in the loop … hence this is also referred to as a “spin wait”).

Hardware solutions

1. Disable interrupts to prevent a context switch: disable interrupts

 // critical section

 enable interrupts

 remainder

 ... this works, but it’s not a good idea!

• User process disabling interrupts … what if the user process never re-enables them?

(for example, due to programming logic error, or program crashes)

• Defeats the purpose of multi-programming!

2. Hardware atomic operations (“synchronization primitive”)

Recall the problem with using a lock variable: the two step sequence test variable, set variable could be

interrupted. What both of these could be accomplished in a single, un-interruptable machine instruction?

IC221 Systems Programming Concurrency

Test and Set Uses a shared “lock” variable: 0 = open, 1 = shut

int test_and_set(int *lock) // (shown for illustration as a C function)

{

 int lock_val = *lock; // save the existing lock value

 *lock = 1; // set the lock

 return lock_val; // return the old lock value

}

test_and_set() when lock is open (0) ⇒ returns 0, shuts the lock

test_and_set() when lock is shut (1) ⇒ returns 1, keeps lock shut

int lock = 0; // shared

 P0 P1

1 while(1) 7 while(1)

 { {

2 while(test_and_set(&lock)) 8 while(test_and_set(&lock))

3 ; 9 ;

4 // critical section 10 // critical section

5 lock = 0; 11 lock = 0;

6 remainder 12 remainder

 } }

int lock = 0;

2 (P0) lock is open ⇒⇒⇒⇒ while(test_and_set(&lock)) returns 0, shuts the lock

 ⇒⇒⇒⇒ P0 exits spin-wait and enters critical section

8 (P1) lock is shut ⇒⇒⇒⇒ while(test_and_set(&lock)) returns 1, lock stays shut

 ⇒⇒⇒⇒ P1 continues to spin-wait
5 (P0) lock is shut, lock = 0 opens the lock

 ⇒⇒⇒⇒ P1 can enter critical section

Swap instruction void swap(int *lock, int *key)
{

 int temp = *key;

 *key = *lock;

 *lock = temp;

 }

 int lock = 0; // shared. Each process has its own key

 P0 P1

1 while(1) 8 while(1)

 { {

2 int key = 1; 9 int key = 1;

3 while(key == 1) 10 while(key == 1)

4 swap(&lock, &key); 11 swap(&lock, &key);

5 // critical section 12 // critical section

6 lock = 0; 13 lock = 0;

7 remainder 14 remainder

 } }

 3 (P0) lock == 0, key == 1

 4 (P0) swap(&lock, &key) ⇒⇒⇒⇒ lock == 1, key == 0

 ⇒⇒⇒⇒ P0 can enter critical section
 9 (P1) lock == 1, key == 1

10 (P1) swap(&lock, &key) ⇒⇒⇒⇒ lock == 1, key == 1

 ⇒⇒⇒⇒ P1 can’t enter critical section
 6 (P0) lock = 0, , key == 1 ... now P1 can enter critical section

IC221 Systems Programming Concurrency

Problems with test_and_set() and swap(): still a busy-wait!

Also, consider two process with different priorities: PHI ,PLO

PLO is in its critical section

 PHI becomes ready

PHI gets the CPU since it has higher priority, making PLO wait

PHI wants to enter its critical section but can’t, since PLO hasn’t left it yet

PLO can’t leave its critical section since it has lower priority and can’t get the CPU

Operating System support

Semaphore: shared variable s

 2 operations:  while(s == 0) 

 wait(s)  ;  atomic

  s = 0; 

 post(s) { s = 1; } atomic

Example use of a semaphore for mutual exclusion from a critical section:

while(1) Assume 2 processes: P0, P1

{ Initialize semaphore s = 1

 wait(s); P0: wait(s) ⇒ s = 0, can enter critical section

 // critical section ... context switch

 post(s); P1: wait(s), s == 0 ⇒ busy waits

 remainder ... context switch

} P0: post(s) ⇒ s = 1

 ... context switch

 P0: wait(s) ⇒ s = 0, can enter critical section

 etc

Example use of a semaphore to synchronize execution: perform S1 in P1 before S0 in P0

Semaphore s = 0

 P0 P1
 : :

 wait(s) S1

 S0 post(s)

 : :

 etc etc

Semaphore as shown uses busy-waiting (inefficient). Better implementation:

wait(s) if(s == 1) s = 0;

else block(); // BLOCK the calling process and place it

// on a queue associated w/ this semaphore

post(s) if(no-one blocked on this semaphore) s = 1;

 else wakeup(); // choose a process blocked on this

// semaphore and make it READY

The OS will maintain a queue for each semaphore.

Note: the post() operation is sometimes called signal() … but this is NOT the signal system call!

IC221 Systems Programming Concurrency

Semaphores just described are called binary semaphores: the semaphore can have value 0 or 1.

A more general semaphore is a counting semaphore:

semaphore s = N // N = # units of the resource that are available

wait(s): s--;

 if(s < 0) block();

post(s): s++;

 if(s <= 0) wakeup();

 Example: binary semaphore by using a counting semaphore initialized to 1

 s = 1;

 P0: wait(s) ⇒ s-- ⇒ s == 0

 P1: wait(s) ⇒ s-- ⇒ s == -1, P1 blocks

 P2: wait(s) ⇒ s-- ⇒ s == -2, P2 blocks

 ... if s < 0 then |s| == # processes blocked on s

A semaphore used as a synchronization primitive prevents simultaneous access to a shared resource.

… but the semaphore itself uses a shared resource: the variable (memory location) storing the

semaphore’s value -!

⇒ the OS must ensure only 1 process at a time has access to the semaphore value (!).

 … can use: Peterson’s Algorithm

 test_and_set, swap

 disable interrupts

Example:

Peterson’s Algorithm Semaphore Operations
flag[me] = TRUE; wait(s): if(s == 1) s = 0;

turn = other; else block();

while(flag[other] && turn == other)

 ; post(s): if(none blocked) s = 1;

// critical section else wakeup();

flag[me] = FALSE;

Semaphore Operations implemented using Peterson’s Algorithm:

wait(s) post(s)

{ {

 flag[me] = TRUE; flag[me] = TRUE;

 turn = other; turn = other;

 while(flag[other] && turn == other) while(flag[other] && turn == other)

 ; // busy wait!! ; // busy wait!!

 if(s == 1) s = 0; if(none blocked) s = 1;

 else block(); else wakeup();

 flag[me] = FALSE; flag[me] = FALSE;

} }

IC221 Systems Programming Concurrency

Disabling interrupts Semaphore Operations
disable(); wait(s): if(s == 1) s = 0;

 // critical section else block();

enable()

 post(s): if(none blocked) s = 1;

 else wakeup();

Semaphore Operations implemented by disabling interrupts:

wait(s) post(s)

{ {

 disable(); disable();

 if(s == 1) s = 0; if(none blocked) s = 1;

 else block(); else wakeup();

 enable(); enable();

} }

 … why is this OK now? Because it is the OS disabling/enabling interrupts, not the user process!

Semaphores are an OS mechanism for mutual exclusion … but they rely on the programmer to use them

correctly!

post(s);

 critical section ERROR! No mutex!

wait(s);

wait(s);

 critical section ERROR! No on can enter!

// forget post()

// or call wait() again

IC221 Systems Programming Concurrency

Producer-Consumer solution using semaphores:

Shared variables:

Counting semaphore eemmppttyy = n; // # empty slots in the buffer

Counting semaphore full = 0; // # full slots in the buffer

 Binary semaphore mutex = 1; // control access to the the buffer

 item_type buffer[n]; // the shared buffer

PRODUCER CONSUMER

Local variables: Local variables:

item_type item; item_type item;
int next_in = 0; int next_out = 0;

while(1) while(1)

{ {

 item = produce();

 wait(eemmppttyy); wait(full);

 wait(mutex); wait(mutex);

 buffer[next_int] = item; item = buffer[next_out];

 post(mutex); post(mutex);

 post(full); post(eemmppttyy);

 consume(item);

 next_in = (next_in + 1) % n; next_out = (next_out + 1) % n;

} }

Access to the buffer is through ‘mutex’

Access to ‘mutex’ is through ‘empty’ for the producer

Access to ‘mutex’ is through ‘full for the consumer

item next_in

item next_out

mutex

eemmppttyy

full

PRODUCER

CONSUMER

