
IC221 Systems Programming  Concurrency 

Concurrency: a property of systems that permit resources to be shared. Concurrency applies both to 

systems where execution is interleaved (multiprogramming) or overlapped (multi-processing) in time. 
 

Concurrent use of shared resources can lead to unpredictable system behavior if race conditions occur.  

A race condition is one in which behavior depend on the order of execution. 

 

Order of execution is generally non-deterministic: we can’t predict which process will execute next.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Illustration: two processes, P0 and P1 
 

 P0     P1   
 if( n == 0 )  n = n + 1; 

   a[n] = x; 

 
  int n = 0; // a variable shared by P0 and P1 

 

 time P0 run, P1 ready       value of n 

   | P0: if( n == 0 )      0 

   |  Context switch 

  | P1: n = n + 1      1 

  |  Context switch 

  ▼ P0: a[1]=x ... not a[0] = x !! 
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Example 2: “Producer-Consumer” cooperating processes that fill/empty a buffer 
 

Buffer of size = n 

 

int        item_count = 0; // shared 

item_type  buffer[ n ];    // shared 

int        next_in = 0; 

int        next_out = 0; 

 

Buffer is full if item_count == n 

Buffer is empty if item_count == 0 

 

 

 

          Producer          Consumer    

 

1 while( 1 )      8 while( 1 ) 

  {          { 

2   item = produce(); 

3   while( item_count == n )    9   while( item_count == 0 ) 

4     ; // do nothing: buffer full  10     ; // do nothing: buffer empty 

5   buffer[ next_in ] = item;   11   item = buffer[ next_out ]; 

6   next_in = (next_in + 1) % n;  12   next_out = (next_out + 1 ) % n; 

7   item_count++;     13   item_count--; 

       14   consume( item ); 

  }          } 

 

Note that: 

• Consumer won’t comsume if item_count == 0 

• Producer won’t produce if item-count == n 

• Producer/consumer never access same buffer location (next_in ≠ next_out) 

 

Looks like a pretty good implementation, no ??? Nope … problem is with ++++ and ---- 
 

In assembler these operations are implemented (something like): LOAD A, item_count 

         INCR A 

         STORE item_count, A 

Suppose at some point the shared variable item_count == 5, and the execution sequence is: 
     7 item_count++ (6)  

    13 item_count-- (5) ... we expect item_count to have value 5 
 

Producer: LOAD A, item_count   ⇒ A = 5, item_count = 5 

     INCR A     ⇒ A = 6, item_count = 5 

Context switch: register A is saved (6) 
 

Consumer: LOAD A, item_count   ⇒ A = 5, item_count = 5 

     DECR A     ⇒ A = 4, item_count = 5 

     STORE item_count, A   ⇒ A = 4, item_count = 4 

Context switch: register A is restored (6) 
 

Producer: STORE item_count, A   ⇒ A = 6, item_count = 6 

            -------------- WRONG! 

 

Why? Both processes can modify item_count, but in what order? (race condition exists). 
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General structure of cooperating processes: 
 

 ENTRY    <-- code identifying we need to modify shared resource 

   critical section <-- code that modifies shared resource 

      EXIT    <-- code indicating we’re done modifying 

      remainder 
 

The critical section problem is that of controlling access to shared resources. 
 

A solution to the critical section problem must satisfy three criteria: 
 

• Mutual exclusion: (“mutex”): only one process can be executing in a critical section 

• Progress: a process not in a critical section can’t keep another from entering a critical section 

• Bounded wait: a process can’t be kept in its entry section forever 
 

Solutions can be found by algorithm (software), in hardware, or through OS mechanisms. 
 

 

Lock variable  Shared variable (a “lock”) initialized to 0 

   Lock must be open (0) for a process to enter its critical section 

   Lock is locked (1) when any process is in its critical section 

   Lock is opened (0) when a process leaves its critical section 

 

Example: 
int lock = 0; // shared 

       P0                                  P1 

1 while( 1 )     7 while( 1 ) 

  {         { 

2   while( lock == 1 )    8   while( lock == 1 ) 

3     ;      9     ; 

4   lock = 1;    10   lock = 1; 

5   // critical section   11   // critical section 

6   lock = 0;    12   lock = 0; 
  }         } 

 

Will this work? 
 

 1 (P0) 

 2 (P0) lock ≠ 1 ⇒ P0 can enter 

 ... context switch 

 7 (P1) 

 8 (P1) lock ≠ 1 ⇒ P1 can enter 

10 (P1) lock = 1 

... context switch 

 4 (P0) lock = 1 

 5 P0 in critical section ----+ 

... context switch            |----> both processes in critical section! 

11 P1 in critical section ----+ 

 

Why does this not work? … because the two steps 2 and 4, or 8 and 11, (test value, set value) can be 

interrupted. 
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Alternation  Shared variable “turn” initialized to 0 or 1 

  Enter if it is my turn to do so 

  Give other process a turn when this process leaves critical section 
 

int turn = 0; // shared 
       P0                                  P1 

1 while( 1 )     7 while( 1 ) 

  {         { 

2   while( turn != 0 )    8   while( turn != 1 ) 

3     ;      9     ; 

4   // critical section   10   // critical section 

5   turn = 1;    11   turn = 0; 

6   remainder    12   remainder 
  }         } 
 

Does mutex hold?  Assume P0 is in critical section. 
    ⇒ turn == 0 

    ⇒ P1 can’t get past line 8  

    ⇒ mutex holds! 
 

Is progress satisfied?  Suppose P0 has a very short remainder 

    Suppose P1 has a very long remainder. 
 

    P1 enters and leaves (turn == 0), and begins its very long remainder 

    P0 enters and leaves (turn == 1), and finishes its very short remainder 

    P0 must now wait (turn != 0) 

    ⇒ P1 not in it’s critical section, but it is keeping P0 out 

    ⇒ progress fails 
 

What’s the problem? P0 could enter if it “knew” P1 was not in its critical section … but all P0 knows is 

that it’s not P0’s turn. Can we just keep track of who’s in the critical section? 

 
int flag[2] = {0}; // shared. flag[i] = 1 if Pi ready to enter 

 

       P0                                  P1 

1 while( 1 )     8 while( 1 ) 

  {         { 

2   flag[0] = 1;     9   flag[1] = 1; 

3   while( flag[1] == 1 )  10   while( flag[0] == 1 ) 

4     ;     11     ; 

5   // critical section   12   // critical section 

6   flag[0] = 0;    13   flag[1] = 0; 

7   remainder    14   remainder 
  }         } 

 

Mutex?       Progress? 
 2 (P0) flag[0] = 1;    2 (P0) flag[0] = 1; 

10 (P1) while( flag[0] == 1 )   ... context switch 

   ⇒ P1 can’t enter      9 (P1) flag[1] = 1; 

   ⇒ mutex holds!    10 (P1) while( flag[0] == 1 ) // P1 waits 

        ... context switch 
       3 (P0) while( flag[1] == 1 ) // P0 waits 

      ⇒ both waiting, progress fails 
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Peterson’s Algorithm   

 
int flag[2] = {0};  // shared 

  int turn = 1;   // shared 

 

while( 1 ) 

{ 

  flag[me] = TRUE; // indicate I want to enter 

  turn = other;  // but let other enter if they want to 

  while( flag[other] && turn == other ) // wait for other to leave 

    ; 

  // critical section 

  flag[me] = FALSE; // I’m out of the critical section 

  remainder 

} 

 

Mutex and progress can be shown. 

 

Peterson’s algorithm as shown works for two (2) cooperating processes … it can be extended to handle 

any number. But it is inefficient! Why? 

 

 while( condition )   this loop is called a “busy wait”. When this process gets the CPU 

   ; // do nothing    it does nothing but repeatedly check ‘condition’ (i.e., it is spinning 

                                                      in the loop … hence this is also referred to as a “spin wait”). 
 

 

Hardware solutions 

 

1. Disable interrupts to prevent a context switch: disable interrupts 

         // critical section 

       enable interrupts 

       remainder 

 

 ... this works, but it’s not a good idea! 

 

• User process disabling interrupts … what if the user process never re-enables them?               

(for example, due to programming logic error, or program crashes) 

• Defeats the purpose of multi-programming! 

  

2. Hardware atomic operations (“synchronization primitive”) 

 

Recall the problem with using a lock variable: the two step sequence test variable, set variable could be 

interrupted. What both of these could be accomplished in a single, un-interruptable machine instruction? 
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Test and Set Uses a shared “lock” variable: 0 = open, 1 = shut 
 

int test_and_set( int *lock )  // (shown for illustration as a C function) 

{ 

  int lock_val = *lock;   // save the existing lock value 

  *lock = 1;    // set the lock 

  return lock_val;   // return the old lock value 

} 
 

test_and_set() when lock is open (0) ⇒ returns 0, shuts the lock 

test_and_set() when lock is shut (1) ⇒ returns 1, keeps lock shut 
 

int lock = 0; // shared 

       P0                                  P1 

1  while( 1 )     7 while( 1 ) 

   {         { 

2    while( test_and_set( &lock ) )  8   while( test_and_set( &lock ) ) 

3      ;      9     ; 

4    // critical section  10   // critical section 

5    lock = 0;    11   lock = 0; 

6    remainder    12   remainder 

   }         } 
 

int lock = 0; 

2 (P0) lock is open ⇒⇒⇒⇒ while( test_and_set( &lock ) ) returns 0, shuts the lock 

  ⇒⇒⇒⇒ P0 exits spin-wait and enters critical section 

8 (P1) lock is shut ⇒⇒⇒⇒ while( test_and_set( &lock ) ) returns 1, lock stays shut 

  ⇒⇒⇒⇒ P1 continues to spin-wait 
5 (P0) lock is shut, lock = 0 opens the lock 

  ⇒⇒⇒⇒ P1 can enter critical section 
 

Swap instruction void swap( int *lock, int *key ) 
{ 

  int temp = *key; 

  *key = *lock; 

       *lock = temp; 

   } 
 

 int lock = 0; // shared. Each process has its own key 

       P0                                  P1 

1  while( 1 )     8 while( 1 ) 

   {         { 

2    int key = 1;     9   int key = 1; 

3    while( key == 1 )   10   while( key == 1 ) 

4      swap( &lock, &key );  11     swap( &lock, &key ); 

5    // critical section  12   // critical section 

6    lock = 0;    13   lock = 0; 

7    remainder    14   remainder 

   }         } 
 

 3 (P0) lock == 0, key == 1 

 4 (P0) swap( &lock, &key ) ⇒⇒⇒⇒ lock == 1, key == 0 

   ⇒⇒⇒⇒ P0 can enter critical section 
 9 (P1) lock == 1, key == 1 

10 (P1) swap( &lock, &key ) ⇒⇒⇒⇒ lock == 1, key == 1 

   ⇒⇒⇒⇒ P1 can’t enter critical section 
 6 (P0) lock = 0, , key == 1 ... now P1 can enter critical section 
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Problems with test_and_set() and swap(): still a busy-wait! 
 

Also, consider two process with different priorities: PHI ,PLO 
 

PLO is in its critical section 

 PHI becomes ready 

PHI gets the CPU since it has higher priority, making PLO wait 

PHI wants to enter its critical section but can’t, since PLO hasn’t left it yet 

PLO can’t leave its critical section since it has lower priority and can’t get the CPU 
 

Operating System support 
 

Semaphore:  shared variable s 

  2 operations:      while( s == 0 )  

     wait( s )       ;       atomic 

         s = 0;      
 

     post( s )  { s = 1;     } atomic 

 

Example use of a semaphore for mutual exclusion from a critical section: 
 

while( 1 )    Assume 2 processes: P0, P1 

{     Initialize semaphore s = 1 

  wait( s );   P0: wait(s) ⇒ s = 0, can enter critical section 

    // critical section  ... context switch 

  post( s );   P1: wait(s), s == 0 ⇒ busy waits 

  remainder    ... context switch 

}     P0: post(s) ⇒ s = 1 

     ... context switch 

     P0: wait(s) ⇒ s = 0, can enter critical section 

     etc 
 

Example use of a semaphore to synchronize execution: perform S1 in P1 before S0 in P0 
 

Semaphore s = 0 

  P0  P1 
  :  : 

  wait(s) S1 

  S0  post(s) 

  :  : 

  etc  etc 
 

Semaphore as shown uses busy-waiting (inefficient). Better implementation: 
 

wait( s ) if( s == 1 ) s = 0; 

else block();  // BLOCK the calling process and place it 

// on a queue associated w/ this semaphore 
 

post( s ) if( no-one blocked on this semaphore ) s = 1; 

   else wakeup();  // choose a process blocked on this 

// semaphore and make it READY 
 

The OS will maintain a queue for each semaphore. 

Note: the post() operation is sometimes called signal() … but this is NOT the signal system call! 
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Semaphores just described are called binary semaphores: the semaphore can have value 0 or 1. 

A more general semaphore is a counting semaphore: 
 

semaphore s = N // N = # units of the resource that are available 
 

wait( s ):  s--; 

   if( s < 0 ) block(); 
 

post( s ):  s++; 

   if( s <= 0 ) wakeup(); 
 

 Example: binary semaphore by using a counting semaphore initialized to 1 
 

  s = 1; 

  P0: wait(s) ⇒ s-- ⇒ s == 0 

  P1: wait(s) ⇒ s-- ⇒ s == -1, P1 blocks 

  P2: wait(s) ⇒ s-- ⇒ s == -2, P2 blocks 

 

  ... if s < 0 then |s| == # processes blocked on s 

 

 

A semaphore used as a synchronization primitive prevents simultaneous access to a shared resource. 

… but the semaphore itself uses a shared resource: the variable (memory location) storing the 

semaphore’s value -! 

 

⇒ the OS must ensure only 1 process at a time has access to the semaphore value (!). 

 

 … can use: Peterson’s Algorithm 

   test_and_set, swap 

   disable interrupts 

 

Example: 
 

Peterson’s Algorithm     Semaphore Operations 
flag[me] = TRUE;     wait( s ):   if( s == 1 ) s = 0; 

turn = other;             else block(); 

while( flag[other] && turn == other ) 

  ;       post( s ):   if( none blocked ) s = 1; 

// critical section       else wakeup(); 

flag[me] = FALSE; 
 

Semaphore Operations implemented using Peterson’s Algorithm: 
 

wait( s )      post( s ) 

{       { 

  flag[me] = TRUE;      flag[me] = TRUE; 

  turn = other;       turn = other; 

  while( flag[other] && turn == other )   while( flag[other] && turn == other ) 

    ; // busy wait!!        ; // busy wait!! 

  if( s == 1 ) s = 0;      if( none blocked ) s = 1; 

  else block();       else wakeup(); 

  flag[me] = FALSE;      flag[me] = FALSE;     

}       } 
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Disabling interrupts     Semaphore Operations 
disable();      wait( s ):   if( s == 1 ) s = 0; 

  // critical section             else block(); 

enable() 

       post( s ): if( none blocked ) s = 1; 

          else wakeup(); 

 

Semaphore Operations implemented by disabling interrupts: 
 

wait( s )      post( s ) 

{       { 

  disable();       disable(); 

    if( s == 1 ) s = 0;        if( none blocked ) s = 1; 

    else block();         else wakeup(); 

  enable();          enable();     

}       } 

 

 … why is this OK now? Because it is the OS disabling/enabling interrupts, not the user process! 

 

 

Semaphores are an OS mechanism for mutual exclusion … but they rely on the programmer to use them 

correctly! 

 
post( s ); 

  critical section ERROR! No mutex! 

wait( s ); 

 

wait( s ); 

  critical section ERROR! No on can enter! 

// forget post() 

// or call wait() again 
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Producer-Consumer solution using semaphores: 

 
Shared variables: 

 
Counting semaphore eemmppttyy = n;   // # empty slots in the buffer 

Counting semaphore full  = 0;   // # full slots in the buffer 

  Binary semaphore mutex = 1;   // control access to the the buffer 

         item_type buffer[ n ]; // the shared buffer 

 

 
 

 
PRODUCER      CONSUMER 

 
Local variables:     Local variables: 

item_type item;     item_type item; 
int next_in = 0;      int next_out = 0; 

 
while( 1 )      while( 1 ) 

{       { 

  item = produce( ); 

  wait( eemmppttyy );       wait( full ); 

    wait( mutex );        wait( mutex ); 

      buffer[ next_int ] = item;        item = buffer[ next_out ];  

    post( mutex );        post( mutex ); 

  post( full );       post( eemmppttyy ); 

             consume( item ); 

  next_in = ( next_in + 1 ) % n;     next_out = ( next_out + 1 ) % n; 

}       } 

 

Access to the buffer is through ‘mutex’ 

Access to ‘mutex’ is through ‘empty’ for the producer 

Access to ‘mutex’ is through ‘full for the consumer 
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