
IC210 Lab 43 Name ____________________

Use the source code provided on the Class 43 web page as a starting

point. Do not change the two data files.

1. Selection Sort

a. Add these functions (prototypes, definitions) to mylib.h,

mylib.cpp:

 // Selection Sort a 1D integer array

 void selectionSort(int* a, int n);

 // Returns the index of the smallest element in a[],

 // between a[from] and a[n-1] (inclusive)

 int findMin(int* a, int n, int from);

 // Swaps elements a[i] and a[j]

 void swap(int i, int j, int* a);

b. Test your Selection Sort function by outputting the data in

int_data.txt after sorting it with selectionSort.

2. Insertion Sort

a. Add these functions (prototypes, definitions) to mylib.h,

mylib.cpp:

 // Insertion Sort a 1D integer array

 void insertionSort(int* a, int n);

 // Returns the index in the sorted array a[] where

 // the value a[keyindex] should go.

 int findIndex(int* a, int keyindex);

 // Shifts elements a[first] through a[last]

 // such that they are one index higher.

 void moveElements(int* a, int first, int last);

b. Test your Insertion Sort function by outputting the data in

int_data.txt after sorting it with inserttionSort.

3. Bubble Sort

a. Add this function (prototype, definition) to mylib:

 // Bubble Sort a 1D integer array

 void bubbleSort(int* a, int n);

b. Test your Bubble Sort function by outputting the data in

int_data.txt after sorting it with bubbleSort.

IC210 Lab 43 Name ____________________

4. Sorting strings

a. Add these functions (prototype, definition) to mylib:

 fillArray, deleteArray, printArray, searchArray

 They should work just like the functions that work for 1D arrays

of integers, except these functions should work on 1D arrays of

C++ strings.

b. Add a function that works like createArray, except that it

creates a 1D array of C++ strings.

c. Add another selectionSort function that works on C++ strings

(and don’t forget that Selection Sort requires two auxiliary

functions: swap, and findMin -!)

d. Check that your implementation is correct: output the data in

string_data.txt after sorting it with your C++ string version

selectionSort.

5. We can change our definition of what “sorted” means quite easily.

In your C++ string version of the Selection Sort auxiliary function

findMin, there is a test that does a “before” kind of comparison, ie.,

something like: a[i] < smallest ... meaning “the string a[i] comes

before the string named smallest” (you might have written it like

smallest > a[i], but the “before” relationship is the same).

a. Change the comparison so it is opposite of what it currently
is, e.g., a[i] < smallest would become a[i] > smallest. Run

your program and sort string_data.txt. What changed?

Answer: __

b. Add a bool function named before that returns the usual
“before” relationship between its two C++ string arguments a and

b. In other words, the function should return true if a < b,

otherwise it should return false. Now in place of where you

wrote the comparison test, a[i] < smallest, call function before

something like this: before(a[i], smallest). Re-run your

program, sorting string_data.txt. Your results should not

surprise you.

c. Re-define what “before” means so that uppercase vs. lowercase is
ignored when comparing strings. Re-run your program, sorting

string_data.txt. Write the sorted output here:

_

4. Turn in:

a. this cover sheet with your name filled in, to which is stapled
b. a hardcopy listing of mylib.h, mylib.cpp, main.cpp

