
IC210 Thinking recursively

Formulating a recursive solution to a problem requires you to decompose the problem

into two parts: a general case and a base case. Try to think of it this way:

• General Case: Here we do something to part of the data, and then apply the general

case again to what’s left. The “apply the general case again” is the recursion. In this

manner we successively apply the general case to smaller and smaller bits of the data

… until we get to a small enough piece that the base case applies. Note: sometimes

we can split the data into several parts to begin with, and apply the general case to all

of those parts (this is how the “merge sort” algorithm works).

• Base Case: Here we do something to the last bit of data (or do nothing if there’s

nothing left), and stop the recursion – we’re done. Note: sometimes there might be

more than one base case, and you would have to decide which one to use, but each of

them stops the recursion.

Example: How can we add up a list of numbers, recursively ?

General case: Add the first number in the list to the sum of the rest of them.

 Base case: No numbers left in the list: add nothing (0).

 Illustration: sum of (1, 2, 3) ?

 = 1 + sum of (2, 3)

 � 2 + sum of (3)

 � 3 + sum of (nothing left)

 � 0 (done)

 Result: 1 + 2 + 3 + 0

Example: How can we print the characters in a string, recursively?

 General case: Print the first character, then print the rest.

 Base case: No characters left in the string (empty string): done.

 Illustration: print “abc” ?

 = ‘a’, then print “bc”

 � ‘b’, then print “c”

 � ‘c’, then print(“”)

 � (done)

 Result: abc

Example: How can we print the characters in a string in reverse, recursively?

 e.g., abcde => edcba

 General case: Reverse the characters in a smaller string that consists of all except

the first one, then print the first character.

 Base case: No characters left in the string (empty string): done.

 Illustration: reverse “abc” ?

 = reverse “bc”, then print ‘a’

 � reverse “c”, then print ‘b’

 � reverse “” (empty string), then print ‘c’

 � (done)

 Result: “cba”

IC210 Thinking recursively

(1) Describe how to solve each of these problems recursively. Your solution must clearly

identify a general case and a base case. Do not write code or pseudo-code: just use

English. Here’s an example:

NoVowels: removes vowels in a string

 Base case: if the string is empty, done

 General case: Output the first character if it is a consonant, then

 Remove the vowels in the rest of the string

a. NoDup: removes consecutive duplicates in a string,

e.g.: “aabccba” => “abcba”

b. Min: finds the smallest in a list of integers,

e.g.: 3, 7, 1, 9 => 1

c. And: gives the result of the logical “AND-ing” of a list of boolean values,

e.g.: true, true, false, true => false

d. Stutter: repeats every letter in a string,

e.g., “so?” => “ssoo??”

e. Pairswap: swaps consecutive pairs of characters in a string,

e.g.: “abcde” => “badce”

 e.g.: “abcd” => “badc”

f. DistLeft: (distribute left) produces pairs of characters from a single character and a

string, by tacking the given character onto the left of each character in the

given string,

e.g.:‘a’, “xyz” => “ax” “ay” “az”

g. CartProd: (cartesian product) produces pairs of characters from two strings, where

the left character comes from the 1
st
 string, the right character comes from

the 2
nd

 string.

e.g.: “abc”,”12” => “a1” “a2” “b1” “b2” “c1” “c2”

 (Hint: make use of DistLeft)

(2) Write a C++ program that implements and tests these recursive functions.

