
IC210 Array practice

Given a set of n coordinate pairs:),(,),,(),,(2211 nn yxyxyx L

the line which best fits this data, in a least-squares sense, is given by the

slope-intercept line equation: y = mx + b

slope

∑∑

∑∑∑

==

===

⋅−

⋅−⋅

=

n

k

k

n

k

k

n

k

kk

n

k

k

n

k

k

xnx

yxnyx

m

1

2

2

1

111
 y-intercept

∑∑

∑ ∑∑∑

==

= ===

⋅−

⋅−⋅

=

n

k

k

n

k

k

n

k

n

k

kk

n

k

kk

n

k

k

xnx

yxyxx

b

1

2

2

1

1 1

2

11

Write a program that outputs the y-intercept and slope of the line which fits

the set of coordinate values in file "data.txt". There can be any number of

coordinate pairs in the file, but the first value in the file is the number

of coordinate pairs in the rest of the file.

For file data.txt: slope = 0.936945, y-intercept = 3.552262

You do not need to handle lines with infinite slope.

In the first program you must read the coordinate values into two statically-

declared one-dimensional arrays, one for the X coordinate, one for the Y

coordinate. For the first program, assume there will never be more that 1000

coordinates pairs in the data file. You must also write and use the functions

whose prototypes are:

// computes and returns ∑
=

n

k

kx
1

: double sum_x(int n, double x[]);

// computes and returns ∑
=

n

k

ky
1

: double sum_y(int n, double y[]);

// computes and returns ∑
=

n

k

kk yx
1

: double sum_xy(int n, double x[], double y[]);

// computes and returns ∑
=

n

k

kx
1

2 : double sum_xx(int n, double x[]);

(x1,y1)

(xn, yn)

Least-squares fit line

slope = m

y-intercept

IC210 Array practice

In the second program you must read the coordinate values into one

dynamically-declared two-dimensional array that holds both X and Y coordinate

values. You will read the size of this array from the data file (remember:

the first value in the file is the number of coordinate pairs in the rest of

the file). You must also write and use the functions whose prototypes are:

// computes and returns ∑
=

n

k

kx
1

: double sum_x(int n, double **coord);

// computes and returns ∑
=

n

k

ky
1

: double sum_y(int n, double **coord);

// computes and returns ∑
=

n

k

kk yx
1

: double sum_xy(int n, double **coord);

// computes and returns ∑
=

n

k

kx
1

2 : double sum_xx(int n, double **coord);

