
IC210 Arrays, pointers, memory

In this discussion we’ll be talking about arrays, pointers and memory addresses

while referring to output from some actual code.

Although we can have an array of any data type, since we’ll be talking about

pointers and memory addresses and where things are stored consecutively in

memory, our discussion will be made easier if we deal with arrays where each

element takes up only one byte of memory (one byte of course being 8 binary

bits). If we used data type int we would somewhat confuse things since an int

occupies four bytes in memory, and two consecutive int in memory are actually

located four bytes apart. It’s just easier (initially, at least) to think of

consecutive things in memory as being stored one byte apart.

Now, we know that data type char, which is most often used to represent ASCII

characters (e.g., the characters you type in on the keyboard), occupies only

one byte in memory. So we could use arrays of char in our discussion. But to

make it obvious that we’re not trying to talk about ASCII characters, but just

‘bytes’, we’re going to use the typedef feature of C/C++ that allows us to

rename data types:

typedef char byte;

You should read this to mean: another name for data type ‘char’ is ‘byte’.

The above typedef allows us to make declarations like this:

byte a; // The variable named ‘a’ has data type byte ...

// but byte is just another name for char ...

// which we know takes up 8-bits in memory ...

// so we know ‘a’ takes up one byte.

The first thing we’ll do is let the compiler tell us how much memory something

of data type byte occupies (we expect it to tell us: one). We’ll also see how

much memory a pointer occupies. We do this using sizeof. You can think of

sizeof as a kind of function whose argument is a data type: sizeof will tell

you how many bytes of memory are occupied by its argument.

cout << sizeof(byte) << ‘ ‘ << sizeof(byte*) << endl;

Output: 1 4

So: One (1) byte is needed to store a value of type byte, and

Four (4) bytes are needed to store a value of type pointer-to-byte

Note that pointers of any type – not just our pointer-to-byte - occupy the same

amount of memory: four bytes. Pointers occupy four bytes.

Before we get started examining arrays, pointers, and memory addresses, let’s

remind ourselves: a pointer is an address.

IC210 Arrays, pointers, memory

Here’s a statically declared one-dimensional array of byte:

byte a[3]; // Declare the array. This allocates enough memory to store

// three (3) values of type byte (i.e., 3 bytes!)

a[0] = 28; // Initialize the array elements. Indices start counting from zero.

a[1] = 19;

a[2] = 80;

// Print some info: addresses and values

printf(" a = %i\n", a);

printf("&a[0] = %i, a[0] = %i\n", &a[0], a[0]);

printf("&a[1] = %i, a[1] = %i\n", &a[1], a[1]);

printf("&a[2] = %i, a[2] = %i\n", &a[2], a[2]);

Output: a = 1310588

&a[0] = 1310588, a[0] = 28

&a[1] = 1310589, a[1] = 19

&a[2] = 1310590, a[2] = 80

Here’s what the array looks like in memory:

In this diagram a single byte of memory is shown

as a box and a pointer is shown as an arrow.

The array elements a[0], a[1], a[2] are

variables of type byte, each occupying one byte

of memory. We see that the address of array

elements with consecutive indices (like a[0] and

a[1]) goes up by one (1310588, 1310589) and can

therefore conclude that array elements are

stored one right after the other in memory.

The name a (the name of the array) is a pointer of

type pointer-to-byte. A pointer occupies four

bytes of memory. We show this with a rectangle in

bold that surrounds four bytes, i.e., it takes

four bytes to store the memory address value

1310588.

The name a has the value 1310588, and the first

element of the array, a[0], is stored at this

address 1310588 ... which illustrates the

following fact:

The name of an array is the address of its first

element, i.e., is a pointer to its first

element.

In other words: a == &a[0]

The name of a statically declared array is also a constant pointer, meaning we

can’t modify what it points to: it always points to the first element of the

array.

After declaring and initializing our array, a, we could do something like this:

 for(int i = 0; i < 3; i++)

 cout << a[i] << endl;

... i.e., access each array element by its index, printing its value.

a[0]

a[1]

a[2]

28

19

80

1310588

1310589

1310590

a 1310588

memory

address

↓

•

•
•

•

•
•

•

•
•

IC210 Arrays, pointers, memory

Now let’s look at the following:

byte a[3] = { 28, 19, 80 }; // same array as before

We have statically declared a three-element array of byte named a. We know that

each element of a is of type byte, and each element is stored at some memory

address.

We can refer to the first element of the array in the usual manner, using its

index: a[0]

When the compiler sees the square bracket and index notation a[0], however, it

actually translates it into this expression: *(a + 0)

The square brackets are an example of what we call “syntactic sugar”. They are

a visual reminder to us, for our convenience only, that we’re talking about an

array. The compiler actually translates the brackets and index into an

expression involving a pointer, as follows:

a[0] becomes *(a + 0)

a[1] becomes *(a + 1)

... etc // The expression a[i] is equivalent to

a[i] becomes *(a + i) // “the contents of (address a, plus i number of bytes”

We can print our array using the compiler’s method of accessing array elements:

 for(int i = 0; i < 3; i++)

 cout << *(a + i) << endl; // *(a + i) is the same as a[i]

We get the same output as we did when we used the square brackets notation,

which is no surprise. We can use either: they’re equivalent.

Let’s make another declaration: byte *p; // a pointer-to-byte

We have declared a variable named p of type pointer-to-byte (in other words, a

variable that can hold the address of a byte). We have not initialized p, but

we’d like this pointer-to-byte to point to one of the elements in array a

(which are all of type byte). Let’s point p at the first element in the array:

p = a;

We know the above assignment statement is correct since the name of an array is

always a pointer to its first element. In this case a == &a[0], so the type on

the right side of the assignment operator (=) is pointer-to-byte, and the type

on the left side of the assignment operator is also pointer-to-byte.

Now we have two pointers to the first element of array: the name of the array

itself, a (which we know always points to its first element), and also p (which

we set equal to a by an assignment statement).

Since p points to the same thing as a, we could use the compiler’s pointer

expression to print our array:

 for(int i = 0; i < 3; i++)

 cout << *(p + i) << endl;

But we also know that *(p + i) is equivalent to saying p[i]. So we can also

print our array this way:

 for(int i = 0; i < 3; i++)

 cout << p[i] << endl;

IC210 Arrays, pointers, memory

Let’s summarize with a diagram of memory after the following declarations are

made:

byte a[3] = { 28, 19, 80 };

byte *p = a;

Both a and p are of type pointer-to-

byte, and point to the first element of

the array (a == p == &a[0]).

Using square bracket notation, the

array element at index i is referred to

using the expression a[i].

The compiler translates a[i] into the

pointer expression *(a + i).

Since p is also a pointer-to-byte we

can use square bracket notation with p

as well: p[i]

... which the compiler translates into

an equivalent pointer expression, which

we could also validly use: *(p + i)

Be aware of a significant difference

between a and p, however. a is a

constant pointer-to-byte that always

points to a[0], whereas p is not a

constant, it is a variable we could

make point to any byte. For example:

byte a1[3] = { 1, 2, 3 };

byte a2[3] = { 4, 5, 6 };

byte *p;

// a1 always points to a1[0]

// a2 always points to a2[0]

p = a1; // p points to a1[0]

p = a2; // p points to a2[0]

*(a + 0)

*(a + 1)

*(a + 2)

28

19

80

1310588

1310589

1310590

a 1310588

memory

address

↓

•

•
•

p 1310588

•

•
•

•

•
•

IC210 Arrays, pointers, memory

Since we know that pointers are stored in four bytes, we’ll sometimes simplify

our diagrams and not explicitly draw a pointer as a rectangle around four one-

byte boxes as we did above – we’ll just draw a box in bold. We will also

continue to draw a pointer using an arrow.

So sometimes we’ll draw declarations like these:

byte a[3] = { 28, 19, 80 };

byte *p = a;

... like so:

Note that we don’t explicitly show

the address values for each byte

of memory. We just know that, for

example, a is located “somewhere”

in memory, and a contains the

address &a[0].

And, again: a box can sometimes represent one byte, but sometimes represent a

four-byte pointer. It should be obvious from context.

Here’s a dynamically declared one-dimensional array of byte:

byte *b = new byte[3];

Like p previously, b is of type pointer-to-byte. And just like the square

bracket and index expressions involving p, we can write expressions like the

following with b (here we are initializing the array):

b[0] = 11; // compiler sees this as *(b + 0) = 11;

b[1] = 14; // compiler sees this as *(b + 1) = 14;

b[2] = 58; // compiler sees this as *(b + 2) = 58;

We we might depict the above with any of these diagrams:

b

b[0] b[1] b[2]

11 14 58

b

11

14

58

b[0]

b[1]

b[2]

b[0]

b[1]

b[2]

11

14

58

b

•

•
•

•

•
•

•

•
•

a

a[0] a[1] a[2]

28 19 80

p

IC210 Arrays, pointers, memory

Let’s dynamically allocate an array of pointer-to-byte:

 byte **c = new byte*[2]; // array c will hold two pointer-to-byte

 printf(" c = %i\n", c);

 printf("&c[0] = %i\n", &c[0]);

 printf("&c[1] = %i\n", &c[1]);

Output: c = 200672

 &c[0] = 200672

 &c[1] = 200676

The array elements c[0], c[1] are variables of

type pointer-to-byte (bold boxes), each

occupying four bytes of memory (which is why

their addresses differ by four!). We haven’t

initialized them and given them values though:

they are shown as having the value ? because as

of yet we don’t know what they point to.

The name of the array, c, is of type pointer-to-

pointer-to-byte (and, being a pointer, it also

occupies four bytes of memory).

The name c has the value 200672, and the first

element of the array, c[0], is stored at address

200672 ... once again illustrating the fact that

the name of an array is the address of its first

element.

Here’s another way we might have drawn the

situation.

The pointers c[0] and c[1] have not been

initialized. We don’t know what they point to.

c[0]

c[1] 200676

c

200672

•

•
•

200672

?

?

•

•
•

•

•
•

c

c[0]

c[1]

?

?

IC210 Arrays, pointers, memory

Now let’s look at the following:

byte **c = new byte*[2];

c is a pointer-to-pointer

to byte.

c[i] is a pointer-to-byte

byte *b = new byte[3];

b is a pointer-to-byte

Since c[i] and b are the

same type, let’s ‘equate’

them:

c[0] = b;

Can we do this? Do the

types match?

On the right side of the

assignment operator: b is

of type pointer-to-byte.

On the left side of the

assignment operator: c[0]

is of type pointer-to-byte.

Yes, we can make this assignment: we make c[0] point to the 3-element b array.

We can do similarly for

c[1] as well, resulting in

something like this:

This, in fact, is how we

dynamically create a two-

dimensional array.

c

c[0]

c[1]

?

?

b

b[0] b[1] b[2]

c

c[0]

c[1] ?

b[0] b[1] b[2]

b

c

c[0]

c[1]

IC210 Arrays, pointers, memory

Dynamically creating a two-dimensional array:

(1) Establish the array dimensions (number of rows and columns). Unlike with

statically declared arrays where the array dimensions must be constants, with

dynamic allocation we can use variables:

int nr = 2, nc = 3;

Since the array dimensions can be stored in variables, we could also input the

dimensions, if our application needed us to:

cin >> nr >> nc;

(2) Declare a pointer-to-pointer-to

some type:

 byte **a;

The name a will be the name of our array. It is actually a one-dimensional

array of row pointers.

(3) Dynamically allocate a one-

dimensional array of row pointers

having nr number of elements:

 a = new byte*[nr];

(4) For each row, allocate the memory the row pointers will point to:

one-dimensional arrays each having nc number of elements:

 for(int r = 0; r < nr; r++)

 a[r] = new byte[nc];

We now have a two-dimensional array whose elements can be accessed by row and

column index:

 a[r][c]

a

?

a

a[0]

a[1]

?

?

a

a[0]

a[1]

a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

IC210 Arrays, pointers, memory

Here’s an example:

int nr = 2, nc = 3;

byte **a = new byte*[nr];

for(int r = 0; r < nr; r++)

 a[r] = new byte[nc];

printf(" a = %i\n", a);

printf("&a[0] = %i, a[0] = %i\n", &a[0], a[0]);

printf("&a[1] = %i, a[1] = %i\n", &a[1], a[1]);

printf("&a[0][0] = %i\n", &a[0][0]);

printf("&a[0][1] = %i\n", &a[0][1]);

printf("&a[0][2] = %i\n", &a[0][2]);

printf("&a[1][0] = %i\n", &a[1][0]);

printf("&a[1][1] = %i\n", &a[1][1]);

printf("&a[1][2] = %i\n", &a[1][2]);

Output:

 a = 208056

&a[0] = 208056, a[0] = 208112

&a[1] = 208060, a[1] = 208168

&a[0][0] = 208112

&a[0][1] = 208113

&a[0][2] = 208114

&a[1][0] = 208168

&a[1][1] = 208169

&a[1][2] = 208170

a

a[0]

a[1]

a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

a[0]

a[1]

a

•

•
•

a[0][0]

a[0][1]

a[1][0]

a[1][1]

a[0][2]

a[1][2]

•

•
•

•

•
•

•

•
•

•

•
•

208056

208056

208060

208112

208168

208112

208168

208113

208114

208169

208170

IC210 Arrays, pointers, memory

Static two-dimensional arrays in memory

const int NR = 2;

const int NC = 3;

byte a[2][3];

printf(“ a = %i\n”, a);

printf("&a[0][0] = %i\n", &a[0][0]);

printf("&a[0][1] = %i\n", &a[0][1]);

printf("&a[0][2] = %i\n", &a[0][2]);

printf("&a[1][0] = %i\n", &a[1][0]);

printf("&a[1][1] = %i\n", &a[1][1]);

printf("&a[1][2] = %i\n", &a[1][2]);

Output:

 a = 1310584

&a[0][0] = 1310584

&a[0][1] = 1310585

&a[0][2] = 1310586

&a[1][0] = 1310587

&a[1][1] = 1310588

&a[1][2] = 1310589

How does the compiler translate the square bracket expression a[r][c] into a

pointer expression?

a[r][c] = *(a + r*NC + c)

 │ │ │
 │ │ offset in the correct row
 │ number of full rows to skip
 base address of the array

Example: a[0][0] = *(a + 0*3 + 0) = *(a + 0) = contents of address 1310584

 a[0][1] = *(a + 0*3 + 1) = *(a + 1) = contents of address 1310585

 a[0][2] = *(a + 0*3 + 2) = *(a + 2) = contents of address 1310586

 a[1][0] = *(a + 1*3 + 0) = *(a + 3) = contents of address 1310587

 a[1][1] = *(a + 1*3 + 1) = *(a + 4) = contents of address 1310588

 a[1][2] = *(a + 1*3 + 2) = *(a + 5) = contents of address 1310589

Note that in the expression (a + r*NC + c), NC is a constant. This is why for a

function parameter that is a statically declared array, we must tell the

compiler how many columns were actually allocated when the array was declared:

void foo(byte a[][NC], int nr, int nc)

{

 for(int r = 0; r < nr; r++)

 for(int c = 0; c < nc; c ++)

 a[r][c] = 0;

}

... because the compiler needs to know the value NC to translate expressions

like a[r][c] = 0 into *(a + r*NC + c) = 0

a

•

•
•

a[0][0]

a[0][1]

a[1][0]

a[1][1]

a[0][2]

a[1][2]

•

•
•

•

•
•

1310584

1310584

1310587

1310585

1310586

1310588

1310589

