
Create a Visual C++ Win32 Console project named 10_14_2008. Add to it a 

new C++ source code file named debug.cpp (you do not need to add a 

header file). Edit the source code file so it looks like this: 

 

 
 

It behaves like the following when it is run: (output is shown in 

black; user input is show in red): 

 

Enter n < 25: 5 

  11  12  13  14  15 

  21  22  23  24  25 

  31  32  33  34  35 

  41  42  43  44  45 

  51  52  53  54  55 

Done. 

 

a. Modify the program so that   b. Modify your program so it  

instead of outputting a row   behaves this way: 

number followed by a column  

number, it ouputs their sum.   Enter n < 25: 5  

It should behave as below:     1  2  3  4  5 

  2  3  4  5  6 

Enter n < 25: 5        3  4  5  6  7   

  2  3  4  5  6       4  5  6  7  8  

  3  4  5  6  7       5  6  7  8  9 

  4  5  6  7  8     Done. 

  5  6  7  8  9      

  6  7  8  9 10     (This is called a Hankel Matrix 

Done.       by the way) 

 

 

Now we’ll get familiar with the debugger. 



 

Right-click in an area of the menu bars that has no buttons: this will 

pop up a window listing the available toolbars. If it is not selected 

already, select the Debug toolbar: 

 

 
 

If it opens a window that looks something like this: 

 

... drag it to the menu bar area: 

 

 
 

 

 

 

 

 

 



Here’s the Debug window docked on the menu bar: 

 

 
 

Put your cursor on the line of code with int main(), and click on 

the Run to Cursor icon.  

 

The program will compile and link if necessary, begin executing, then 

stop at the line where your cursor is. A yellow arrow indicates the 

next line to execute. 

 

Run to Cursor is useful if you want your program to run to, then pause 

at a certain spot but you don't want to have to individually step 

through every single line of code by hand to get there. 

 

 

 

 

 

 

 

 

 

 



From the View -> Debug Windows ► menu, open the following debugging 

windows: Watch, Variables 

 

 
 

 
 



You can resize these windows, drag them around on the screen, and dock 

them in the Visual C++ main window if you like. Here I have the 

Variables window docked at the bottom, and the Watch window docked in 

the upper right: 

 

 
 

Make sure the Locals tab is selected in the Variables window. 

 

Click the Step Over icon until the yellow arrow goes past the 

variable declaration, int n. In the Variables window n will be 

displayed with its current value (if we had declared other variables, 

they would be shown here as well). Since we have not assigned anything 

to n, it will have a random value. 

 

You can continue to click Step Over, but progress stops on the cin 

line. The program is waiting for you to input n. Click on your 

program’s console window: 

 

Type a value for n in the console 

window, and verify that it shows up 

in the Locals window. 

 

 

 

 

 



 
 

Variables that come into scope automatically appear in the Locals 

window, and disappear when they go out of scope. It is also possible to 

manually add variables and expressions, but these will appear in the 

Watch window. Click on the Watch1 tab, then click in the blank cell on 

the left-hand side of that window, and then enter an expression 

like n*4. You should see 4 times the current value of n that you typed 

into the console window (i.e., your input, read by cin): 

 

 
 

Proceed through your program using Step Over. Observe how the variables 

change as you proceed through the loops. Observe how they come into and 

go out of scope as you go. 

 

 

 



Walking through you program in this manner is very slow. To move 

faster, we'll revisit the Run to Cursor button. Position the cursor to 

the line with the first curly brace following the first for. Click on 

the Run to Cursor button. What happened (check the Program Window)? 

Click on the Run to Cursor button several times, checking the output 

each time. 

Step Into  and Step Out  are used to step into and out of functions 

other than main() (we don’t have any in this example). If you 

accidentally end up in a screen full of code from one of the libraries, 

you can get back to your code by using the Step Out icon. 

 

Try this: Step Out of main() by clicking on the Step Out icon. If a 

window opens that says “Find Source”, select CANCEL to close it. 

 

  
 

What is displayed is assembly language code that Windows uses to 

terminate your program. Close that window (use the small black x on the 

top right of the Visual C++ window). You should be back to your source 

code. 

 

To stop debugging, click the Stop Debugging icon:  

 

 

 



For each of these programs, (1) compile and run it, (2) use the 

debugger to correct it, (3) Submit: A hardcopy listing of each 

corrected program. 
 

// Debugging practice program #1 

#include <iostream> 

using namespace std; 
 

int main() 

{ 

  cout << "Enter two Integers: "; 

  int a, b; 

  cin >> a >> b; 
 

  if(a = b) 

    cout << "They are Equal!\n"; 

  else if( a > b ) 

    cout << "The 1st is bigger!\n"; 

  else 

    cout << "The 2nd is bigger!\n"; 
 

  cout << "Enter a Decimal to be Converted to Percent: "; 

  double decimal; 

  int percent; 

  cin >> decimal; 
 

  percent = static_cast<int>(decimal) * 100; 

  cout << "That's " << percent << ‘%’ << endl; 
 

  return 0; 

} 

 

// Debugging practice program #2  

#include <iomanip> 

#include <iostream> 

using namespace std; 
 

void myswap( double& x, double& y ); 
 

int main() 

{ 

  cout << "Enter two numbers and I’ll swap them: "; 

  double a, b; 

  cin >> a >> b; 
 

  cout << fixed << showpoint << setprecision(3); 

  cout << “a was “ << a << “, b was “ << b << endl; 

  myswap( a, b ); 

  cout << “a  is “ << a << “, b  is “ << b << endl; 
 

  return 0; 

} 
 

void myswap( double& x, double& y ) 

{ 

  int temp; 

  temp = x; 

  y = x; 

  x = temp; 

} 



// Debugging practice program #3  

#include <iomanip> 

#include <iostream> 

using namespace std; 
 

void squareIt( int n ); 
 

int main() 

{ 

  cout << "Enter an integer n <= 20: "; 

  int n; 

  cin >> n; 

  if( n < 20 ) 

    return 1; 

 

  cout << fixed << showpoint << setprecision(3); 

  cout << “The first “ << n << “ squares: “ << endl; 

  for( int i = 1; i < n; i++ ) 

  { 

    squareIt( i ); 

    cout << setw(2) << i << endl; 

  } 

 

  return 0; 

} 
 

void squareIt( int n ) 

{ 

  n = n * n; 

} 

 

 


