
1. Assume these declarations: char c = 'T', d = 'S';

char* p1 = &c;

char* p2 = &d;

char* p3;

Assume the output of the following is as shown: cout << &c; 6940

cout << &d; 9772

What will be printed when the following statements are executed, one

right after the other?

p3 = &d;

cout << "*p3 = " << *p3 << endl; Output: *p3 = S

p3 = p1;

cout << "*p3 = " << *p3 Output: *p3 = T

 << ", p3 = " << p3 << endl; Output: , p3 = 6940

*p1 = *p2;

cout << "*p1 = " << *p1 Output: *p1 = S

 << ", p1 = " << p1 << endl; Output: p1 = 6940

2. Consider these declarations and statements: int* p;

int i = 42, k = 75;

p = &i;

After the above, which of the following will change the value of i to 75?

(A) k = i;

(B) *i = *k;

(C) p = 75; Answer: D

(D) *p = 75;

(E) *i = 75;

3. Explain the error: char c = 'A';

double *p = &c;

type mismatch: &c is pointer to char

 p is pointer to double

4. int n, sum = 0;

 for(n = 1; n <= 10; n = n + 1)

 sum = sum + n;

Rewrite the above for() loop correctly using only the pointer

declarations given below. In other words, don’t use n, use the pointer

to n, and don’t use sum, use the pointer to sum:

 int n, *pn = &n;

 int sum = 0, *psum = ∑

 // for loop rewritten using only the pointer variables:

 for(*pn = 1; *pn <= 10; *pn = *pn + 1)

 *psum = *psum + *pn;

