
A Thumbnail Sketch of our “Little Man Computer” (LMC)

• Our LMC is an extremely simplified version of a real computer. LMC

hardware consists of a CPU and RAM (memory):

• LMC hardware runs LMC software (application programs) that are stored in

its memory:

• The LMC runs application programs the same way a real computer does: with

the CPU executing LMC application program instructions one at a time.

• The LMC CPU operates in a fetch-decode-execute cycle: (1) it determines

where the next application program instruction to be executed is located in

memory, (2) it gets that instruction (fetch), (3) it figures out what that

instruction means (decode), (4) it performs the instruction (execute).

• The LMC CPU contains three places that can hold data, called “registers”:

the PC (program counter), the IR (instruction register), and the ACC

(accumulator). It also contains a “decoder” and an Arithmetic Logic Unit

(ALU):

• The IR (instruction register) holds the instruction being executed (i.e.,

the current instruction, the one that was just fetched)

• The PC (program counter) shows where in memory to get the next instruction

(the next one to be fetched).

• The ACC (accumulator) holds intermediate results.

• The LMC ALU (arithmetic logic unit) can add and subtract.

CPU RAM

LMC application program

written in LMC machine
language

PC

IR

ACC

decoder

ALU

CPU RAM

LMC application program

CPU RAM

• LMC application programs are written in machine instructions that the CPU

can understand. The set of instructions the CPU can understand is called

its instruction set. The LMC CPU instruction set has ten instructions:

HLT: halt (stop) the LMC

ADD: add something stored in LMC memory to what’s in the ACC

SUB: subtract something stored in LMC memory from what’s in the ACC

STA: store (copy) what’s in the ACC to some place in LMC memory

LDA: load (copy) something from memory into the ACC

INC: increment the value in the ACC by 1

BRA: reset the PC to a different value (branch)

BRZ: reset the PC to a different value if the ACC is zero (branch-on-zero)

BRP: reset the PC to a different value if the ACC ≥ 0 (branch-on-zero)

INP: get an input value from the user and put it in the ACC

OUT: write what’s in the ACC out to the user

An LMC application program is just a sequence of these machine

instructions.

• LMC memory consists of 100 storage locations for the individual LMC

machine instructions that make up an LMC application program. Each of

these storage locations is identified by its address. An LMC memory

address is just an integer number from 0 to 99.

• Like all computers the LMC understands numbers only, but we like to deal

with words. The words HLT, ADD, SUB, … etc., are called mnemonics. A

mnemonic is just an easily remembered name for something else. In this

case, these mnemonics are names given to the actual numeric values of the

LMC machine instructions:

HLT: 000 STA: 3xx BRA: 6xx INP: 901

ADD: 1xx LDA: 4xx BRZ: 7xx OUT: 902

SUB: 2xx INC: 500 BRP: 8xx xx can be any 2-digit integer

The leftmost digit of an LMC instruction is called its opcode. The rightmost

two digits are its operand. An operand is usually an LMC memory address.

 Example: STA 45 (i.e., 345) – 3: means store (copy) what’s in the ACC

 45: means into LMC memory address 45.

CPU RAM

LMC application program

written in LMC machine

language
PC

IR

ACC

decoder

ALU

RAM

00

01

02

03

04

98

99

*

*

*

memory addresses

• Here’s an example of a very simple LMC application program:

INP Get an input value from the user, put it in the ACC

INC Increment the value in the ACC by 1

OUT Write what’s in the ACC out to the user

For example, if the user enters 5, this program would output 6.

In LMC memory, the program would look like this:

Remember: we deal with mnemonics, but the LMC deals only with numbers.

RAM

00

01

02

03

04

98

99

*

*

*

901

500

902

Simulating a “Little Man Computer” by writing a C++ program.

• We must distinguish between a C++ program which runs on a real computer

for the purpose of simulating LMC hardware, and an LMC program that runs

on LMC hardware. We’ll call the C++ program an “LMC Simulator”:

An LMC Simulator (C++ program) written to simulate LMC hardware would

consist of:

o Variables to represent LMC registers: int IR, PC, ACC;

o An array to represent the LMC memory: int mem[100];

o Functions to do basic LMC CPU operations: fetch(), decode(), execute()

o Other functions: boot(), load_program()

Once again: LMC hardware runs LMC programs written in LMC machine

instructions. An LMC Simulator program written in C++ behaves like LMC

hardware.

The picture below depicts this situation: the C++ program simulates the

LMC hardware; the simulated LMC hardware runs LMC programs.

• fetch() needs to simulate getting an LMC instruction from LMC memory and

putting it in the IR.

• decode() needs to simulate breaking an LMC instruction into opcode and

operand.

• execute() needs to carry out what the particular LMC instruction opcode is

supposed to do (ADD, SUB, INP, ... etc.)

• boot() needs to simulate turning the LMC hardware ON.

• load_program() needs to simulate putting an LMC application program into

LMC memory.

#include <iostream>

using namespace std;

int main()

{

 int IR, PC, ACC, mem[100];

}

void decode()

{

 // etc …

}

CPU RAM

LMC application program

written in LMC machine
language

PC

IR

ACC

decoder

ALU

