
U.S. NAVAL ACADEMY

COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

High Energy Laser Progressive Wavefront Modeling

Izbicki, Michael J. Needham, Donald M. (Advisor)

USNA-CS-TR-2006-03

December 9, 2006

USNA Computer Science Dept. ◦ 572M Holloway Rd Stop 9F ◦ Annapolis, MD 21403

Computer Science Department
SI495A: Research Project Report

Fall AY07

High Energy Laser Progressive Wavefront Modeling

by

Midshipman M. J. Izbicki, 083306

United States Naval Academy
Annapolis, MD

Date

Certification of Faculty Mentor’s Approval

Associate Professor Donald M. Needham
Department of Computer Science

Date

Department Chair Endorsement

Professor Kay G. Schulze
Chair, Department of Computer Science

Date

 Izbicki 1

Abstract

 High energy lasers have the potential to revolutionize naval warfighting by
providing a weapons platform that has greater precision and speed than anything
currently available. These lasers can be mounted on ships for surface warfare or mounted
on satellites for strikes anywhere around the world. Crucial to the development of these
lasers is an understanding of how different atmospheric conditions affect the laser’s
propagation and the shape of the beam when it finally illuminates the target. Dr. Bill
Colson from the Naval Postgraduate School Physics Department developed a computer
model for simulating these beams; however, his program can only output two
dimensional slices of the three dimensional laser. Theoretically, the beams should be
forming “noodles” of energy that break off from the main beam, but that can be difficult
to see from Colson’s original output. This project aims to modify Colson’s program so
that it can create three dimensional models of the laser beams, and show the progression
of the beams over time.

 Izbicki 2

Table of Contents

1. Introduction .. 3
2. Background .. 3

2.1 Compiling and Running Colson’s Code .. 5
2.2 Analyzing Colson’s Code .. 6

3. Rendering the 3D Simulation ... 7
3.1 Finding a Rendering Solution .. 7
3.2 The VolumeViz Render ... 8

3.2.1 Generating the Data .. 9
3.2.2 Culling the Input Data .. 9

3.2.3 Interpreting the Results .. 13
3.2.4 Generating Movies with VolumeViz ... 14

 4. Analysis and Future Work ... 15
4.1 Analyzing the End Product .. 16
4.1 Analyzing Culling Algorithms ... 16
4.1 Scientific Analysis ... 17

 5. Conclusions and Future Work ... 18
 6. References .. 18

 Izbicki 3

1. Introduction

 Lasers have many potential applications for enhancing the effectiveness of the
Navy, particularly in the realm of advanced weapons systems. Modeling how lasers
propagate through the environment is an important part of developing these future
weapons. When new lasers are developed, one of the first tests that is done is to study the
beam’s “burn pattern,” that is the shape of the beam when it hits the target [3]. The focus
of this project is to alter an existing algorithm for computing the propagation of a laser
wavefront, making the output more useful. Dr. Bill Colson of the Naval Postgraduate
School Physics Department developed a program that uses an algorithm he developed to
generate a postscript file that describes a beam’s characteristics. His output included
three two-dimensional cross-sections of the laser: a top, side, and front view. While the
front view provides a good description of how the laser would burn the target, the three
views taken together provide little visual insight as to how the laser actually propagates
through the atmosphere. Of particular interest is the possible formation of “noodles,” or
sections of laser that branch off from the main path and may or may not reconnect. This
project aims to improve the utility of Colson’s algorithm by providing an accurate three-
dimensional rendering of the laser that will let the observer analyze any section of the
laser’s path.

 The second section of this report provides background information on Colson’s
algorithm and focus on analyzing Colson’s code. The code itself is written in poorly
formatted C that no longer conforms to the languages standards and contains little in the
way of explaining what it is actually doing. The third section examines techniques for
rendering the laser in 3D, how it was implemented, and how movies are generated that
show the laser’s wavefront progressing as a function of time. The fourth section analyzes
how effectively these modifications improve the viewers understanding of the laser
propagation and the fifth section examines the possibilities for future work in this field.
Instructions for installing and running the final product are in appendices D and E
respectively.

2. Background

 Colson’s algorithm [1] works by inserting lenses into the path of the laser beam
and propagating the beam according to the appropriate optical laws of physics. Each lens
represents an effect of the physical environment on the beam. Examples include the
effect of smoke and dust particles in the beam’s path, wind, and even the effect of the
laser heating the air as it passes through it. We will now examine the specifics of the
output and analyze the strengths and weaknesses of the current presentation. The
corresponding input file can be seen in Appendix A, and it’s full output in Appendix B.

Conventions used in this document:

• When referring to the laser’s dimensions, the x and y axes are defined as labeled
on the x-y end view of Colson’s original output, with origin at the center of the
beam, and the z axis will be defined along the “length” of the beam with origin at
the start.

 Izbicki 4

• All commands and source code will be given in Courier New, example: make

Figures 1-3 are taken from the final output from Colson’s code. The lighter areas
represent the energy of the laser, and 95% of the laser’s energy is contained within the
white outline. The labels on the sides represent relative distances only, and are unit-less.
Figure 1 shows the end view of the laser after passing through all the lenses. If a sensor
were placed at the target end of the laser, this is what it would detect. From this view we
can determine that there is a strong concentration of energy in the center of the beam,
with smaller patches off to the side. Due to the rough nature of the output, however, we
cannot determine exactly how these patches are related to each other. They could be
areas where the main beam is weaker, or they could be the distinct “noodles.”

Figure 1: Sample Beam End View

Figure 2 shows the side view of the beam from Figure 1. This view gives a more

detailed representation of how the beam propagates. The laser concentrates its energy in
the center of the beam midway through the propagation. Small, distinct patches of
energy demonstrate some evidence for the formation of noodles, but it is not clear how
these might relate to the patches we saw in the end view.

Figure 2: Sample Beam Side View

Figure 3 shows the top view of the beam. In this view beam’s energy distribution

remains relatively constant and concentrated throughout its entire propagation. Unlike
the side view from Figure 2, there is no evidence for noodle creation, and little insight is
provided into the beam’s final end view. Although they represent the same beam
propagation, these views provide conflicting information and are difficult to analyze. A

 Izbicki 5

three dimensional model should help mesh these views into a more comprehensible
representation and remove ambiguity.

Figure 3: Sample Beam Top View

2.1. Compiling and Running Colson’s Code

Colson’s code comes packaged in a single file called Code.tar.gz. The extracted

directory contains one very large source file called beamnew.c, a Makefile, and several
example inputs. The machines in the Sun lab have gcc version 4.0.1 installed. Running
make with this compiler will result in a series of errors. Appendix C.1 addresses how
these errors were fixed. Once the program is compiled, running make should now
generate the executable beamnew, which can be run by the command ./beamnew <
input > output.ps. Apendix A has an example input file, and Apendix B the
resulting output. Figure 4 shows the dataflow pipeline for Colson’s unmodified code.

It is typically easier to work with several small source files than one large one, so

the beamnew.c file was divided into four separate files: Greeks.c, cmath.c, beam.c, and
math.h; a new src/beamnew directory was created to house these files. The beamnew.c
file had comments clearly showing where each of these files began and ended inside of it,
and appeared merely to be a merging of these formerly separate files. Greeks.c contains
constant definitions, cmath.c math functions and postscript output functions, math.h
prototypes for the cmath.c file, and beam.c contains the main function and all of the
physics. The Makefile was then modified to reflect these changes. All further additions
to Colson’s code are encapsulated in pre-compiler commands of the form:

InputFile

 (Colson’s Code)

Output.ps

Figure 4: Dataflow pipeline for the Colson’s unmodified code.

 Izbicki 6

#ifdef _IZ_ADDITION NAME_
// new code

#endif

So that changes can be easily identified and removed by uncommenting its respective
#define at the beginning of the file.

2.2. Analyzing Colson’s Code

 Colson’s code was developed over time by many different people and is not easily
understood without the relevant background physics knowledge. Variables are given one
or two letter names that give little indication as to their intended use, and there is little
whitespace separating the code into logical modules. The code is, however, separated
into distinct segments by comments which give usually clear descriptions of what that
section is doing.

The first step in the analysis began by looking for the code that rendered the
graphics in the postscript output, hoping to be able to use this to figure out how the data
was stored. Near the end of the file were three sections labeled “side view,” “top view,”
and “end view,” corresponding to the respective picture in the output. A summary of
how the important variables for this process are used and created follows. Note that all
double values fall in the range [0,1].

• int nt: defines the number of discrete steps in the z axis (read from input)
• int nx: defines the number of discrete units in the x and y axes (read from

input)
• int itp, t: The physics simulation calculates intensity values by starting the

beam at the origin and “stepping” through each element in the z axis. t counts
the current iteration through the loop and goes from 0 to np (read from the
input file), and itp is a “culled” version of t used as a graphics index.

• double ar[x][y], ai[x][y]: real and imaginary components respectively of
physics model at point (x, y)

• double ayx[x][y]: matrix representing intensity values in the end view. This
matrix is created for every increment of itp, but for memory reasons
overwrites whatever was in it previously. This means that what is in it at the
end is what will be displayed in the end view.

• double ax[z][x], ay[z][y]: matrices representing intensity values in the side
view (ax) and top view (ay). The matrix is updated every time itp is
incremented according to the formulas:

ax[itp][i]=sqrt(ar[i][no2]^2+ai[i][no2]^2)
ay[itp][i]=sqrt(ar[no2][i]^2+ai[no2][i]^2)

where i is an iterator for a loop over the range [0,nx), and no2 is the
distance into the beam to take it’s cross section of, set as default to the center
(no2=nx/2).

 Izbicki 7

3. Rendering the 3D Simulation

 Rendering and modeling 3D objects is a well developed field of computer science
with applications in many other fields of science. Advanced imaging techniques such as
CAT scans are used by doctors to take images of patients’ internal organs that require are
most descriptively rendered in a 3D environment. More similar to this project, engineers
involved in fluid dynamics simulations create algorithms to model the changes in density
and flow of fluids as a result of placing an object in its path. As a result of the wide
applicability of this problem, there are already many available applications designed to
render various 3D problems. Dr. Colson’s code was never designed to output a 3D
rendering of the beam, however with minor modifications it can be changed to output
data suitable for rendering in one of these 3D environments. New models for rendering
3D data, such as Schafhitzel’s model [7], might provide more insight into the shape of the
beam than a standard 3D representation, and Mehl’s techniques might be applied to
create a program that could classify the shapes found in the beam [5]. Building a simple
3D model is an appropriate first step towards a fuller analysis of the shape.

3.1. Finding a Rendering Solution

 Because 3D rendering is so important, there are a large number of rendering
solutions available, each with their own strengths. Most of the very advanced ones are
proprietary. They cost large amounts of money to use and are available only on specific
platforms. To take advantage of their unique features requires computing power only
available to those with access to large clusters of machines or super computers.
Rendering a laser beam with Colson’s model proved to be relatively straightforward, so
there was no need for these solutions. The alternative was to use open source solutions.
These are attractive because they reduce the overall cost of the project but more
importantly they make building off of this work easier for someone in the future. There
are no restrictions to the distribution of the final product, and anyone who wants to
continue work on this project will be able to unrestricted by copyright.

Two attractive open source solutions were the Vis5D+ program [2] and the
VolumeViz program that comes with vtkFLTK [4]. Vis5D+ was originally designed to
model weather patterns, and therefore includes the ability to use a time-dimension to
display changes in the model. This could easily be used to render movies of the beam
propagating through the model. Its input files, although well documented, are large and
awkward to manipulate because of the extra functionality used to model weather patterns.
At the recommendation of Dr. Stahl, the 3D rendering expert at the Naval Academy, we
ended up using the VolumeViz program instead. It is actually an example program
demonstrating how the Visual Toolkit (VTK) and the Fast Light Toolkit (FLTK) API’s
can be used to render 3D models [8]. It uses an intuitive and simple input file format and
is easy to use. By using the well documented VTK, any changes in functionality needed
would be easy to implement.

 Izbicki 8

3.2. The VolumeViz Renderer

 Using the VolumeViz 3D rendering solution created some difficulties. It was
initially hard coded to use certain files and was not a general rendering solution.
Furthermore, input data files tended to grow very large making rendering times so large
as to be impracticable. Before looking at the actual code modifications it is necessary to
have an introduction to the data culling used to reduce this problem. Sections 3.2.1-3.2.3
cover theory behind the program and Appendix E provides instructions on using the final
product. Figure 5 is the updated dataflow pipeline that takes into account the 3D
rendering.

InputFile

 (Colson’s Code)

Output.ps

Intermediate Data

VolumeViz

3D Rendering

Figure 5: Updated dataflow pipeline taking into account the 3D rendering.

 Izbicki 9

3.2.1. Generating the Data

 In order to generate a 3D rendering of a laser beam, a program needs to create a
three dimensional array of intensity values over the x, y, and z axes. Colson’s code
generates these values, but does not store them because the original code has no use for
them. By storing each iteration of the axy array, however, we can easily generate them.
Initially the idea was to have the beamnew program generate an intermediate, human
readable, data file. This data file could then be processed by any number of programs to
convert the data into a format suitable for rendering. This solution is very modular,
allowing new rendering solutions to be added with ease. Appendix C.2 contains the code
segment in beam.c right after it generates the next slice in the ax and ay matrices that
generates the three dimensional data and stores it. Ultimately, the intermediate file
created by the _IZ_VIS5D_ segment became unnecessary overhead. Once one
adequate rendering solution was found, there was no need for adding others. The
_IZ_VOLVIS_ segment which is used in the final product takes out this intermediate
step and generates data directly readable by the VolumeViz program.

 Because the VolumeViz program is relatively simple, its input doesn’t require
many extras and is straightforward. It takes input in the form of horizontal “slices”
containing a two-dimensional x-y grid and then compiles these slices into a 3D model. It
stores this data in the directory out/, and each slice is a file in the directory named
out.n, where n is the z coordinate of that slice. The individual data points are stored as
single bytes and contain values from 0-255. Each x-y grid is a 32x32 matrix of these data
points, and there are exactly 100 horizontal slices. These values were chosen for reasons
discussed in the Section 3.2.2 on culling and are hard coded into the program.

3.2.2. Culling the Input Data

 Colson's code generates more data than is practical to handle. With each slice
containing a 1024x1024 matrix of 4-byte doubles, at typically 1000 slices per image,
nearly 4 gigabytes of information is produced for each image rendered. Furthermore,
although less important, generation time scales proportionally with data output, and
certain large inputs left the computer running all night without generating a usable output.
Our focus was to reduce these space and time requirements while still getting data that
accurately depicts the laser beam. The first step to solving this problem was to not store
unused memory. Because each double in the matrix only stored a value from zero to one,
we can compress it into a single byte. This is done by multiplying the value by 256 (the
maximum size of one byte), and truncating the decimal places. Next, by aggressively
reducing the number of slices and size of each matrix we can minimize our output.
Empirically, by timing the program’s running time with the time command and
changing the input variables in the input file, we can determine which variables are
causing the program to slow down the most. Following this method showed that the
generation time scaled linearly with the nt variable and quadratically with the nx
variable. This makes sense, because nt controls the number of slices along the time axis,
and nx the width and height of those slices. See tables 1 and 2.

 Izbicki 10

 Colson’s Code provides a partial solution to this problem. The output to the
postscript file already uses a culled version of the number of slices. Every time the
simulation passes through another time-unit, the variable t gets incremented up to a
maximum of nt. Every tenth time the simulation passes through another time unit, the
variable itp gets incremented. By moving the 3D output from the t loop into the itp
loop, we store only one tenth the information we were storing before. Program run time
remains mostly unaffected, however, because we still must perform the calculations for
each iteration. Because these new slices are taken on a regular interval and spread
throughout the dataset, they provide a slightly less accurate although significantly
condensed version of the original output. We can justify that the new output is still
accurate enough for the purposes of analyzing the beam’s shape because although it does
not use all the information Colson’s Code generates, it uses all the information that would
have been available for the postscript output. In the example input files, nt was always
set to 1000, which would result in a culled length of 100. This length is hard-coded into
the modified VolumeViz program; changing this value in the input file will result in only
the first 100 slices being rendered, no matter how many exist. Figure 6 shows how this is
done visually. Variable i indicates the index of the slice before culling and variable n
indicates the index after culling. Darkened squares indicate slices that remain after
culling. Each of these darkened squares is then further culled as in figure 7.

 Culling the data corresponding to the nx variable proves much more challenging
and more important. nx controls the width an the height of the time slices. Colson’s
original code has no method for culling this data, and memory and time grow
quadratically with respect to this variable. The first step for finding an acceptable
solution is to examine the output as this variable changes. It is impossible to do this
directly, however, because of the way computers generate random numbers. Given an
initial seed, the computer will generate a sequence of unpredictable numbers that are

 i=2, n=NA
i=3, n=NA

i=4, n=NA
i=5, n=NA

i=6, n=NA
i=7, n=NA

i=8, n=NA
i=9, n=NA

i=11, n=NA
i=12, n=NA

i=999, n=NA

i=10, n=1

i=1000, n=100

Use only these slices

Ignore these slices

Figure 6: Culling the nt Variable

i=0, n=0
i=1, n=NA

 Izbicki 11

always the same for that seed. It appears that all of the interesting looking beams, that is
those that may be generating noodles that a 3D analysis would help with, are modeled in
a way that they use random numbers to simulate things such as wind. By increasing the
size of the x-y grid, we change the number of random numbers generated with each time
interval, causing the program to be further along in the random sequence than it would
have been with a smaller x-y grid, causing a fundamentally different beam shape. We
could simply leave this how it is and require our program to accept only a certain size nx,
like we did with nt, but unlike with nt this approach would limit the types of beams we
would be able to analyze because nx equal to 64 will give a different beam than will nx
equal to 32. Table 1 shows how the beam shape will change as a function of nx.

nx Time (s) Output size
(_IZ_VIS5D_)

Output size
(_IZ_VOLVIZ_)

End view from Colson’s
output

8 .5 0.5 MB 6.4 kB

16 1 2.3 MB 25.6 kB

32 4 9.2 MB 102 kB

64 16 37 MB 410 kB

128 64 148 MB 1.6 MB

Table 1: Beam Shape and Properties a as a Function of nx

 By culling all large inputs into the smallest one that maintains enough information
to visually analyze, we can render all beams and reduce the amount of space required for
previously unmanageable ones. Table 2 shows how the beam’s shape and accuracy are

 Izbicki 12

affected by culling. It may be argued that the beams where nx is 32 may contain all
interesting beam shapes, however, increasing the value of nx will always increase the
accuracy of the beam because it increases the number of data points that the physics
simulation is run on. Even if those points are then subsequently downsized into a more
manageable number, because they were calculated with more information their reduced
version will remain more accurate. It is like rounding error when doing a math problem:
you get more accurate results if you round at the end rather than after each step.

nx CULL_SIZE Time (s) Output size

(_IZ_VIS5D_)
Output size

(_IZ_VOLVIZ_)
End view from Colson’s

output

128 8 25 0.5 MB 6.4 kB

128 16 26 2.3 MB 25.6 kB

128 32 31 9.2 MB 102 kB

128 64 35 37 MB 410 kB

128 128 61 148 MB 1.6 MB

Table 2: Culled Beam Shape and Properties with a Constant nx

An easy way to perform the culling is to create “culled areas” equal in size to the
input size divided by the output size. Take the first point of the culled area and discard
the rest. Advantages to this technique are its simplicity, ease of implementation, and,
because it is the same one used by Colson’s code to cull along the time axis, consistency.
A final size of 32 was hard coded into the program; using Table 2 as a reference, this
should be enough to accurately represent the data while at the same time keeping it as

 Izbicki 13

small as possible. Due to the limitations of the implemented technique, the input size
must be a power of two. Figure 7 shows how an nx value of 128 is culled down to an
equivalent one of 32. By taking the input size 128 divided by the output size of 32, we
get that each block should represent an area four units across. We then take the first data
point in this area (darkened in the figure) as representative of the entire block, discarding
the rest. Because output size grows quadratically with nx, this reduces it by a factor of
16. In the worst case scenario nx is equal to 1024, and following the above yields a 1024
fold reduction in size, converting a 4 GB file into a 4 MB file. Techniques for more
advanced culling are discussed in Section 4.1.

3.2.3. Interpreting the Results

The final images generated by the VolumeViz program represent the energy of
the laser beam. There are two main views to select from: a contour view and a filled in
view. The contour view generated by passing –c to the program as in Appendix E. The
contour is drawn wherever the beams energy is equal to 85 out of a maximum energy of
256. Therefore, all space contained within the contour has an energy of at least a third of
the beam’s maximum energy. The second method of rendering is by filling in the beam’s
space with colors and translucence according to the intensity at that point. This lets the
user see all data points, but provides a less concrete picture of the edge of the beams
energy. This is done by passing –C to the program as in Appendix E. When no options
are passed to the program, the image is generated as in Figure 9, with the left half
rendered filled in, and the right half rendered as a contour.

x-y grid before culling

x-y grid after culling

Figure 7: Culling the nx Variable

1 0 2 3 5 4 6 7 9 8 10 11 125124 126 127

0

1

2

3

4

5

6

7

8

9

10

11

124

125

126

127

0

1

2

31

1 0 2 31

 Izbicki 14

3.2.4. Generating Movies with VolumeViz

Now that VolumeViz effectively renders static images of a beam, it should be
relatively easy to string together a series of static shots to create a movie of the beam
progressing along the screen. Movies have the advantage of showing the viewer a cross
section of the entire beam, so that if anything interesting happens in the middle it will not
be missed. One rudimentary way for generating the static shots is to simply change the
number of slices that VolumeViz renders. The VolumeViz program was modified to
change the number of slices it accepts using the –g [numslices] parameter, and a script
created that iterates from volume –g 0 to volume –g 100, creating 100 png files. The
program mencoder can then be used to compile these images into an avi file, a standard
format that will play in most video players. Figure 9 shows a representative selection of
frames from a sample movie. In frame 1, the beam is still at its source and hasn’t done
anything interesting yet. By frame 40 we can see some turbulence develop in the core of
the beam, and frame 100 shows the beam after it reaches the target. The energy in this
beam remains relatively focused in the center.

 This method successfully generates movies, but has some significant problems.
The default position of the camera in the program is a top end view of the beam, so
running the command volume –g 0 generates a picture of the top of the beam. This angle
gives little more insight into the beam’s shape than the top view in Colson’s original
code, and doesn’t take full advantage of the 3D. The program was therefore modified to
accept camera angles on the command line. The –r [angle] rotates the camera right angle
degrees, and the –u [angle] parameter rotates the camera angle up angle degrees. This
introduced another problem, however. Certain angle combinations cause the program to
crash when rendering certain stages of the beam progression (i.e. volume –g 54 –r 15 –u

Figure 8: Sample VolumeViz Output

 Izbicki 15

15 may crash, but volume –g 60 –r 15 –u 15 and volume –g 54 –r 30 –u 15 will not).
This appears to happen about five percent of the time. Although the exact cause is
unknown, it is not a result of bad input generated by the program. It appears to be a
problem with the vtk library. The result is either a black png image or no output image.
Calling the run.sh script to render movies would insert these black frames into the movie,
interfering with the visualization. The script was therefore modified to keep track of
which calls to volume fail and not include them in the final rendering, minimizing the
effects of this problem. A second problem is that the VTK window will not render the
static image unless it can create an X window to do so in. When invoking run.sh, this
causes a series of windows to quickly pop up and close over the course of several
minutes. Although the output of program remains unaffected by the issue, it does
effectively prevent the computer from being used during generation, which is annoying.

4. Analysis and Future Work

 The newly created rendering pipeline effectively lets the end user render 3D
models of the lasers generated by Colson’s code. These models allow the beams shape to
be more easily and effectively analyzed; however, there are three main areas that can be
improved upon: polishing the code by improving user’s ability to interact with the
improved functionality, improving the culling algorithms used in the code, and adding
more scientific analysis features.

Frame 1 Frame 20 Frame 40

Frame 60 Frame 80 Frame 100

Figure 9: Wavefront Progression in Sample Movie

 Izbicki 16

4.1. Analyzing the End Product

 The interactive rendering of the beam is well implemented and works as designed,
but the movie generation has several minor flaws. The way the program currently works,
it renders each frame of the movie separately and then combines them into a movie. For
an unknown reason, however, the program crashes with certain combinations of angles
and frame indices, generating blank frames in the movie. A quick fix to this was to
simply not include these blank frames in the final product. This creates noticeable jumps
in the movie where several frames are skipped and is not an ideal solution. The proper
fix for this problem would be to stop the program from ever crashing. The problem
probably lies in the way the VolumeViz program interacts with the VTK library, but may
be a bug in the library itself. Either way, this could be a very time consuming process.
An easier solution will be presented next.

A second problem lies in the massive inefficiency of this method for generating
movies. Every time a frame is generated, the VolumeViz program must regenerate the
entire beam up to that point, despite the fact that it has already done it before. Thus,
when rendering one hundred different frames for the movie, the image for the first frame
gets rendered one hundred distinct times, and has other images concatenated on the end
of it ninety-nine times. A form of memorization can eliminate this problem. Rather than
rendering each frame individually, the VolumeViz program could render only the final
frame, then gradually show less and less of it for each progressive frame. Because only
one frame is rendered in this technique rather than 100 in the old technique, this has
potential to dramatically improve render time. Implementing this would require looking
through the VTK documentation to figure out how to manipulate what portions of the
rendered image get displayed. This technique has the added bonus of fixing the crashing
issue by completely circumventing it, as the program is now no longer asked to render
half formed beams at various angles.

4.2. Analyzing Culling Algorithms

 The biggest problem converting Colson’s beam propagation data into 3D was the
amount of information generated, up to 4 gigabytes. This made culling necessary, and
the implementation used reduced the intermediate information down to several
megabytes in the worst case. At this point, improving the culling algorithm is probably
not necessary for size requirements, however it may be possible to increase the amount
and accuracy of data stored in the small size. One easy way to improve the accuracy of
the data is to use an averaging algorithm to shrink the data as opposed to the current
method of picking the first data point. This has the disadvantage of being slightly more
difficult to implement, having to keep track of averages through three dimensions, but
has the advantage of considering every point in the final culled version.

There are two relatively easy algorithms that could increase the accuracy of the
information contained in any given size of data. One way to measure the efficiency of
the storage is to measure its entropy, or randomness. The theory behind this is that the
more random a set of data is, the less room there is for an algorithm to compress it;

 Izbicki 17

conversely, the less entropy in the data, the more room to compress it. There are many
generic algorithms for compressing data. Huffman encoding, for example, takes
advantage of the frequency of certain values throughout the data to more evenly
distribute it. Ratanaworabhan’s algorithm [6] was designed specifically for scientific
computations so may be an effective drop in solution. Because we are getting the same
sort of data every time, however, we can develop an algorithm specific to our purpose
that may be more effective. Currently there is very little entropy in the culled data
because most of the data points differ very little relative to the ones next to them. One
method for taking advantage of this fact is to record the derivatives between individual
points rather than the values of the points themselves. This takes advantage of the fact
that most of the data points differ very little relative to the ones next to them, because
while the changes in value may be very small, the changes in the derivatives may become
quite large. Euler’s method could then be used to integrate over these derivatives of the
dataset to reconstruct the original [9]. These algorithms, while interesting to think about,
would provide little in the way of practical improvements. At several megabytes for the
largest datasets, the culled data is already small enough for any purpose, and if greater
accuracy is desired, it is a simple matter of decreasing the culling amount.

4.3. Scientific Analysis

 Ultimately, it is the goal of this project to give the user a better understanding of
how different atmospheric effects are going to affect a laser’s propagation. One way to
do this would be to incorporate different physical models into the rendering pipeline.
Thus if a scientist develops a propagation model that differs from Colson’s, he could plug
in his algorithm and see a 3D rendering of the beam it produces. This is actually
relatively easy to do. The VolumeViz program will render images of anything that can
produce intermediate data in the format it expects, i.e. a 3D grid of bytes representing
intensity values of the beam at that point. To incorporate a new algorithm into the
process, it simply needs to be modified such that it outputs its beam shape in that format.
Adding this functionality to Colson’s code was relatively easy, and adding it to another
algorithm should be similarly easy. The new algorithm would probably need similar
culling done to scale the data down to size.

 The most promising area for further investigating beam propagation involves
Monte Carlo simulations. A Monte Carlo simulation is done on algorithms that have a
random component, and involves repeating the simulation many times and combining all
of the results to see what it would probably look like if it were done again. Colson’s code
would be very suitable to this type of simulation. In the input file, the rand variable seeds
the random number generator used in the simulation and has a huge effect on many of the
propagations. In real life, however, you cannot simply choose which set of random
variables nature will apply on your laser. By running the simulation many times, we can
average each of the results to get a “what it probably would like” and take the standard
deviation to find “how likely it would look like this.” These results would probably be
the most useful in determining if a laser could effectively hit its target given certain
weather conditions.

 Izbicki 18

5. Conclusions

 Accurately modeling laser propagation is a critical step towards the development
and application of laser based information and weapons systems. Dr. Colson developed a
program for modeling a laser’s propagation with a two dimensional output, but due to the
limitations of the display format, a lot of information is lost and the beam shape is hard to
discern. By connecting the algorithm from Colson’s code to the VolumeViz program, we
were able to effectively visualize the laser’s propagation in a 3D environment. The
algorithm developed by Colson generated enormous amounts of data, however, which
had to be reduced to make generation and render time acceptable. Raw, the output could
be as large as four gigabytes. A system of culling was therefore implemented which
maintained the integrity of the data and managed to reduce the size down to several
megabytes. The successful conversion of the beam’s data into a 3D format provides
additional insight into the beam’s propagation that might have otherwise been lost.

6. References

1. Laser Propagation Software, Dr. Colson, Naval Postgraduate School.

2. S. Johnson, J. Edwards. Vis5D+. http://vis5d.sourceforge.net/.

3. A.H. Lumpkin, R.B. Fiorito, D.W. Rule, D.H. Dowell, W.C. Sellyey, A.R. Lowery,

Initial Optical-Transition Radiation Measurements of the Electron Beam for the
Boening Free-Electron-Laser Experiment, Free Electron Laser Conference, 1989.

4. S. McInerly. The vtkFLTK bridge Library. http://vtkfltk.sourceforge.net/.

5. A. Mehl, B. Blanz, T. Vetter, H.P. Seidel, A statistical method for robust 3D surface

reconstruction from sparse data, 3D Data Processing, Visualization and
Transmission, 2004.

6. P. Ratanaworabhan, J. Ke, M. Murtscher, Fast Lossless Compresssion of Scientific

Floating-Point Data, Data Compresssion Conference, 2006.

7. T. Schafhitzel, D. Weiskopf, T. Ertl, Interactive exploration of unsteady 3D flow with

linked 2D/3D texture advection, Coordinated and Multiple Views in Exploratory
Visualization, 2005.

8. The Visualization Toolkit. http://www.vtk.org/.

9. Weisstein. “Euler Forward Method.” MathWorld.

http://mathworld.wolfram.com/EulerForwardMethod.html

10. Weisstein. “Monte Carlo Method.” MathWorld.

http://mathworld.wolfram.com/MonteCarloMethod.html

http://www.vtk.org/
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/EulerForwardMethod.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/MonteCarloMethod.html

 Izbicki 19

Appendix A
 inbeamnew0: sample input file

1.0 0.5 0.0 2.0 0.0 0.0 100.0 5.0 4
1.0 -20.0 20.0 20.0 20.0 0.0 0.0 0.0
10.0 1000 32 4 10 100 1 3 6

z0 tw x0 tc dp dpx dpr kc type
a0 Edge S s C wa abs dps
wdx nt nx nm ns npic nc order seed

tc=optical component location; dp=phase shift at center of lens;
E=knife-edge located at E; S=square hole with side 2S;
s=slit with opening 2s; C=circular hole with radius C;
ab=absorption coefficient; dpx=phase shift across x-axis;
dpr=turbulence total phase; kc=characteristic turbulence
wavenumber;
nm=# of k-modes each screen; ns=# of screens each step;
type=1 => single k-mode; type=2 => exponential turbulence;
type=3 => k^-5/6 turbulence; type=4 => triangular turbulence;
dps=stagnation pt strength; wa=radius of annular hole;
a0=initial field strength;
order=1 => use first-order Laplacian method;
order=2 => use second-order Laplacian method;
order=3 => use Crank-Nicholson method;

 Izbicki 20

Appendix B
 inbeamnew0.ps: Colson’s original output from inbeamnew0 (Appendix A) rendered

using gimp

 Izbicki 21

Appendix C.1: Modifying Colson’s Code
 Fixing Compilation Errors

 Colson’s code came packaged in a single file called Code.tar.gz. The
extracted directory contains one very large source file called beamnew.c, a Makefile,
and several example inputs. The machines in the Sun lab have gcc version 4.0.1
installed. Running make with this compiler will result in a series of errors. These
are caused by string literals with newlines in them, something allowed on many older
compilers. To fix this problem, open beamnew.c in emacs and append \n\ to the
end of each occurrence. The \n maintains the formatting that the output expects, and
the trailing backslash tells the compiler to treat the next line as though it were
appended onto the current line. Running make should now generate the executable
beamnew, which can be run by the command ./beamnew < input >
output.ps.

 Izbicki 22

Appendix C.2: Modifying Colson’s Code
 Code segment of beam.c that outputs the 3D array of intensity values to a file

/* file dump */

#ifdef _IZ_VIS5D_
for (x=0;x<nx;++x) {

for (y=0;y<nx;++y) {
a2=ar[x][y]*ar[x][y]+ai[x][y]*ai[x][y];
if (a2>amx*amx) amx=sqrt(a2);
Ef+=a2*dx2;
ayx[y][x]=sqrt(a2);
if (ayx[y][x]>ayxmx) ayxmx=ayx[y][x];
fprintf(fp,"%f ",ayx[y][x]);

}
fprintf(fp,"\n");

}

fprintf(fp,"-----\n");
#endif

#ifdef _IZ_VOLVIS_
char buff[40];
memset(buff,0,sizeof(buff));
sprintf(buff,"out/out.%i",itp);
FILE* fp=fopen(buff,"w+");
for (x=0;x<nx;++x) {

for (y=0;y<nx;++y) {
a2=ar[x][y]*ar[x][y]+ai[x][y]*ai[x][y];
if (a2>amx*amx) amx=sqrt(a2);
Ef+=a2*dx2;
ayx[y][x]=sqrt(a2);
if (ayx[y][x]>ayxmx) ayxmx=ayx[y][x];
unsigned char ucp=(unsigned char)(ayx[y][x]*256);
fwrite(&ucp,1,1,fp);

}
}
fclose(fp);

#endif

 Izbicki 23

Appendix D: Installation
 Instructions for installing the laser rendering project on a unix system

1. Create a new directory laser, and download the following files:
• proj.tar
• MPlayer-1.0pre8.tar.gz
• VTK-4.4.2.zip
• fltk-1.1.7-source.zip

• cmake-2.4.3-SunOS-sparc.tar.gz (or the appropriate one for you
architecture)

2. To build mplayer:
 > gunzip MPlayer-1.0pre8.tar.gz

> tar –xf MPlayer-1.0pre8.tar
> cd MPlayer-1.0pre8
> ./configure
> ./make
> cd ..

3. To build cmake:
 > gunzip cmake-2.4.3-SunOS-sparc.tar.gz

> tar –xf cmake-2.4.3-SunOS-sparc.tar
> cd cmake-2.4.3-SunOS-sparc
> ./configure
> ./make
> cd ..

4. To build VTK:
 > unzip VTK-4.4.2.zip

> cd VTK

> rm Utilities/png/png.h ***(Distribution includes obsolete file)
> ../cmake-2.4.3-SunOS-sparc/bin/cmake .
> ./make
> cd ..

5. To build FLTK:
 > unzip fltk-1.1.7-source.zip

> cd fltk-1.1.7
> ../cmake-2.4.3-SunOS-sparc/bin/cmake .
> ./make
> cd ..

6. To install project files:

> tar –xf proj.tar
> cd proj
> ./make
> cd ..
> ./run.sh

 Izbicki 24

Appendix E: Running the program
 Instructions for generating the various types of output.

1. Using Colson’s original program

Generate the postscript output file:
> ./beamnew < [inputFile] > [ouput.ps]

View postscript file:
> gs [output.ps]

2. Using the VolumeViz renderer

To facilitate use of the renderer, the script run.sh can be used to generate all the
intermediate data.

• Perform all steps to generate a single movie from an input file

> ./run.sh –a [inputFile] [outputFile.avi] [options]

• Load an input file. This is required for all of the following options to work.

> ./run.sh –b [inputFile]

• Launch the interactive renderer

> ./Volume [options]

• Generate still images

> ./run.sh –p [options]

• Convert still images into avi

> ./run.sh –v [outputFile.avi]

• Generate still images and make avi in single step

> ./run.sh –vp [outputFile.avi] [options]

• Generate nine movies from loaded input that showcase the laser’s properties

> ./run.sh –super

There are three options for rendering the shape of the beam. Passing –c renders the
outside surface of the beam only, -C renders the contours inside the beam, and
passing –cC uses both rendering techniques. Passing nothing causes the left half of
the beam to be rendered as if –c were passed and the right side to be rendered as if –
C were passed.

The default angle of the beam is looking at the destination end of the beam, offset by
15 degrees up and to the right. The –r [angle] and –u [angle] parameters can be
passed to specify different angles.

 Izbicki 25

