U.S. NAVAL ACADEMY
COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

5((I %‘
=

X

~ O A =
> _SCIENTIA { ©
I~

On Quantifer Elimination by Virtual Term Substitution

Brown, Christopher W.

USNA-CS-TR-2005-07

August 24, 2005

USNA Computer Science Dept. o 572M Holloway Rd Stop 9F o Annapolis, MD 21403

On Quantifier Elimination by Virtual Term
Substitution

Christopher W. Brown
Computer Science Department, Stop 9F
United States Naval Academy
572M Holloway Road
Annapolis, MD 21402

wcbrown@Qusna.edu

August 4, 2005

Abstract

This paper presents a new look at Weispfenning’s method of quantifier
elimination by virtual term substitution and provides two important im-
provements. Virtual term substitution eliminates a quantified variable by
substituting formulas in the remaining variables for each atomic formula
in which the quantified variable appears. This paper investigates the poly-
nomials that arise in substitution formulas Weispfenning proposed and,
based on this examination, provides a simpler substitution for the general
case, and alternate substitutions for several commonly occurring situtions.
Providing alternate substitutions allows virtual term substitution to make
choices that produce simpler output.

1 Introduction

Quantifier elimination for elementary real algebra is a fundamental problem
in symbolic computing. The great potential utility of quantifier elimination
algorithms is, however, offset by an equally great theoretical and practical com-
plexity. Thus, the search for improved algorithms that are capable of solving
interesting problems in a reasonable amount of time and space is important.

One successful result of this ongoing search is Weispfenning’s method of quan-
tifier elimination by virtual term substitution [4, 6, 5]. This method, restricted
to formulas that are linear or quadratic in the quantified variable, has been

implemented in the Redlog system [2], and has been applied successfully to a
number of practical problems (e.g. [7]).

The strength of quantifier elimination by virtual term substitution is that its
complexity is relatively unaffected by the number of parameters — i.e. un-
quantified variables — in the problem. The method has two weaknesses: First,
applying the method iteratively to eliminate several quantified variables may
not be possible because eliminating one variable may increase the degrees of re-
maining variables, thus violating the degree restrictions. Second, quantifier-free
equivalent formulas produced by the method tend to be very large, even when
simple quantifier-free equivalents exist.

The purpose of this paper is to provide a new perspective on virtual term sub-
stitution, and to apply this new perspective to help address the method’s weak-
nesses.

1.1 What’s new

Virtual term substitution is based on rewriting. A formula 3x[F] is transformed
into an equivalent formula in which x does not appear by combining many copies
of F in which atomic formulas are substituted by more complex formulas. In this
paper we give a new analysis of which polynomials appear in these substitution
formulas and why. Using this analysis, we provide an improved substitution
(Section 3) for the algorithm’s general case: improved in that fewer atomic
formula and fewer distinct polynomials appear in the output formula. Generi-
cally, the improved method produces a formula in which the set of polynomials
occurring is a proper subset of those occurring in the original method’s output.

Also using our initial analysis, we provide alternate substitutions which may
be used in certain situations — allowing the method to evaluate alternatives
and choose the best substitution (see Section 4). In particular, substitutions
which use lower degree polynomials or which allow obvious simplifications can
be chosen.

Two detailed examples applying both improvements are given in Section 5. The
ideas presented here have not yet been implemented, so experimental data on a
wide range of benchmark problems cannot be given.

Finally, Section 6 applies the characterization from previous sections of the
polynomials appearing in substitutions to determine a new bound on the degree
of any irreducible factor of a polynomial appearing in the formula resulting from
eliminating a variable.

2 Evaluating a formula at a quadratic’s roots

Suppose we want to eliminate z from the formula 3z[f = 0 A F|, where f =
ax? 4+ bz + ¢ and each atomic formula in F is of the form g o 0. Theorem 2.1
of [6] describes the wirtual term substitution approach to solving this problem.
Virtual term substitution starts by substituting (—b++/D)/2a for z in F. Each
atomic formula g((—b=+/D)/2a) o 0 is then replaced by an equivalent formula
without radicals.

For the rest of this section we let f = az? + bx +c¢, D = b*> — dac, a1 =
(=b+ vD)/2a, a1 = (—b — v/D)/2a, and let g be an integral polynomial
of positive degree n in z. First we will prove some simple results concerning
g(ax1). Then we will restate the substitution described in Theorem 2.1 of [6].

2.1 Evaluating g at the roots of f

The following results provide several characterizations of the evaluation of a
polynomial at a root of a quadratic. They are the basis of this paper’s discussion
of virtual term substitution.

Lemma 1 For k > 1, (=b+ Vb — dac)® = 271 (Uy, + Vi, vb? — 4ac), where
Uk and Vi, are integral homogeneous polynomials of total degree k and k — 1
respectively, such that Uy — bV has even integer content.

PROOF. We proceed by induction on k. The lemma clearly holds for k£ = 1
since Uy = —b, V1 =1, and U; — bV; = —2b. Suppose the lemma holds for some
k. Then

(=b+ Vb2 —dac)k Tt = 21Uy + Vipvb2 — 4ac)(—b + Vb? — dac)
= 91 ((=b(Uy, — bVk) — dacVi) + (Ux — bV) V5% — dac)

By supposition, Uy — bVj, = 2A for some integral polynomial A of total degree
k, which clearly must be homogeneous. Therefore,

—b(Uy, — bVy) — dacVy, = —b(24) — 4acVy, = 2(—bA — 4acVy)

which has total degree k + 1 and is also clearly homogeneous. So (—b +

Vb2 — dac)* ! = 28Uy + 2FVi 1 Vb2 — dac, where Uyy = —bA — 4acVy, and
Vit+1 = A. Finally, we note that

UkJrl - kaJrl = —bA — 4ach —bA = —2bA — 4ach

which clearly has even integer content.]

Theorem 1 Formal substitution of x = a, into g(x) yields (a*+pb*/D)/(2a"),
where a* and b* are integral polynomials.

Theorem 2 Let a* and b* be as above and let § = n mod 2. res,(f,g) = (a** —

b*?D)/(4a™) and sgn(g(ai1)g(a-1)) = sgn(a*® — b**D) = sgn(a’res, (f, 9))-

PROOF. By a well-known theorem (see for example [1]) res, (f, g) = a7, g(«;),
where m = deg,(f), n = deg.(g) and the roots of f are ai,..., . So:

res,(f.9) = a"g(=IP)g(=5P)
- a® (a*gl;*n\/ﬁ) (a*;l;*n\/ﬁ)
= (a** = b**D)/(4a")
The rest follows easily. [

Theorem 3 Let prem(g, f) =rz +s. Then

1. b* =r =psci(g, f),
2. a* =2as —br = —rfy(—s/r), and
3. 4a"res,(f, 9) = 4a(as® — srb +r2¢c) = a** — b*2D.

PROOF. Since prem(g, f) = rx + s, we have a" " 'g = Qf + rx + s, where Q is
a polynomial. So

a"lg(FEER) = QURERP) (R +r(FHRP) +
anflg(—b;ra\/ﬁ) _ r(_b;ﬁ) +s
g(—b-i-\/ﬁ) _ 2as—rb+rvVD
2a 2a™

Since prem(g, f) = sresi(g, f), r = pscy(g, f). That 2as — br = —res,(raz +
s, fz) = —rfo(—s/7) and 4a™res,(f,g) = a** — b*?D = 4a(as® — srb+ r2c) are
easily checked by simple calculations.]

2.2 Virtual term substitution with a quadratic constraint

We are now ready to restate the substitutions from Theorem 2.1 of [6], which
eliminate x from a formula of the form Jz[f = 0 A F].

Theorem 4 (Weispfenning) Let f = ax?® + bz + ¢ and let g be an integral
polynomial of degree n in x. Let § = n mod 2 and let R = 4a(as® — srb+ r2c).
Assuming a # 0 A b? — dac > 0,

1. g(oy) =0<=pra* <OANR=0.

#0<=pra* >0V R#O.

glap

- glap)
- g(ap)
. g(ap) <0&=a*a® <OAR>0Vpra® <0A (a*a® <0V R <0)
- g(ap)

g(ay §O<:>a*a‘5§0/\R20\/pra5§0/\R§0

Corollary 1 Given the assumptions above,

glay) <0+ a*a® <OAR>0Vpra® <0A (a*a® <0V R <0).

PRrOOF. Note that 3) from above can be written equivalently as a*a’ < 0AR >
0Vpra® < 0A(a*a® < OAR =0V R < 0). Recall that R = a*? — 72D, so
R<0=r#0and R=0A7r=0= a* = 0. So, pra’ = 0 is inconsistent
with both a*a® < OA R=0and R < 0. I

There is some reason to consider this alternative substitution for g < 0, since
a simplifier that removes inconsistent subformulas might more easily recognise
an unsatisfiable branch with pra’ < 0 rather than pra’® < 0 — if r was a sum
of squares, for instance.

Let F,, be the formula obtained by replacing each atomic formula g o 0 with
the appropriate formula from Theorem 4. Let F__/, be the formula obtained
by replacing atomic formula g o 0 with res(bx + ¢, g), noting that if b # 0,
res(bx + ¢, g) = b%g(—c/b).

Theorem 5 (Weispfenning) Under the assumption a #0Vb#0Vc#0

F[f =0AF|<=a=0Ab#£0AF_.;,Va#0Ab —dac > 0N (Fo_, V Fy,).

This gives us quantifier elimination for formulas of the form 3z[f = 0A F] under
the assumption that a, b and ¢ do not vanish simultaneously.

3 Evaluating a formula near a quadratic’s roots

Theorem 3.1 of [6] gives a method for eliminating « from a formula 3z F that
does not necessarily have an equational constraint, provided that all irreducible

factors of polynomials in F' (recall that atomic formulas are normalized to g o 0)
have degree at most two. The approach is based on introducing the positive
infinitesimal € in the substituted expressions and formal substitution of —oo.

The idea is as follows, there is an z satisfying F' if and only if F' is satisfied at
x = a or x = « + € for some real root a of a polynomial in F', or at z = —o0.
This is clear because the truth value of F' can only change as = passes through a
root of the left-hand side of some atomic formula. Thus, 3z[F] is equivalent to
the disjunction of F' evaluated at each of these candidate points. Weispfenning
improves on this by showing that if a polynomial f only appears in the atomic
formulas f =0 or f <0, the point x = « + € where f(«) = 0 does not need to
be tested. Similarly, if f only appears in the atomic formulas f < 0 or f # 0,
the point x = « does not need to be tested.

In this section we restate Weispfenning’s original virtual term substitution method,
then provide a different substitution for infinitesimal expressions, one that uses
fewer atomic formulas and, more importantly, fewer distinct polynomials. In
particular, the polynomials in the resulting formula are the same regardless of
whether or not substitution of infinitesimals is required.

3.1 Virtual term substitution for formulas with z-degree
at most 2

Evaluating F' at a point «, where « is the root of the left-hand side of some
atomic formula, has already been addressed. Evaluating F' at —oo is straight-
forward. Therefore, evaluating F' at a + €, where « is the root of the left-hand
side of some atomic formula, is what remains. Weispfenning accomplishes this
by considering the derivatives of polynomials appearing in F', and thus reduces
the determination of the sign of a polynomial g at o+ € to the determination of
the sign of ¢ and its derivatives at . In short, the infinitesimals are removed,
but at the cost of introducing new polynomials.

Theorem 6 (Weispfenning) Let f = az® + bz +c and let g = a,a* + byx + cg.
Assuming a # 0 A b — dac <0,

1. glap+€)=0<=a3=0Aby;=0Acy =0
2. glap+€) #0<=ay=0Vb; =0Vcy=0

5. glay+e) < 0 <= glay) < 0Vglay) = 0A(g.(ay) < OVga(ay) = Oy < 0)
4 o

glap+¢€) <0< g(ap+¢€) =0V g(ap,+¢) <0.

Assuming a =0Ab#0, all of the above holds simply replacing ¢, with —c/b.

Let Fi,,+c denote the formula obtained by carrying out the a # 0 substitutions
for each element of F'. Let F_.; . denote the formula obtained by carrying
out the a = 0 substitutions for each element of F. Let F_,, denote the formula
obtained by replacing ¢ = 0 with A]_,9; = 0, g # 0 with \/[_,¢; # 0, and

g <0 with \/}'_, ((—1)igi <O0A /\;’:i+1 gj = O), where g = gnz™ + -+ - + go.

Let f; = a;x? + b;x + ¢; be the polynomial occurring in the ith atomic formula,
fi g; 0. Let Dz = bf - 4(11'01' and let Qg 4+1 = (—bz + b% — 4&161)/(204) Let I
and J be the sets of indices ¢ such that o; is =, < and <, #, respectively.

Theorem 7 (Weispfenning) 3x[F] is equivalent to

Vier (@i =0Abi ZONF_ p,Vai #0AD; > 0N (Fa,,, V Fa,_,))

v

Vies (@i =0Abi ZONF_¢ ppeVai #0AD; 20N (Fa, o i4eV Fay_i1e))
v

F_o

Notice that if there are no strict inequalities there is no need to evaluate at a
point defined by infinitesimals. Evaluation at infinitesimals can be undesirable
because substitutions for g(a;, + €) < 0 and g(ayp, + €) < 0 require substitutions
for g, (ap + €) < 0, which means more atomic formulas in the substituted ex-
pressions, and more distinct polynomials. That the expression substituted for
9z (ap + €) < 0 really contains additional polynomials can be checked by simple
calculation.

o If f = azx?+bx+cand g = ur? + vr + w, then r = av — ub, a* =
2a%w — 2auc — bav + ub?, and R = 4a(u?c® — 2ucaw + a*w? — vube —
vbaw + av?c + wub?).

o If f=wz?+vr+wandg=az?+bx+c, then r = —(av — ub), a* =
2u?c—2uaw —vub+av?, and R = 4u(u?c? — 2ucaw + a*w? — vubc — vbaw +
avie + wub?).

o If f =az?+bxr+cand g = 2ux + v, then r = 2u, a* = 2(av — ub), and
R = 4a(4u®c — 2vub + av?)

This shows clearly that the substitution for g(a, + €) < 0 contains the polyno-
mial 4u?c — 2vub + av? which is a part of neither the substitutions for g(«,)o0
nor f(B,)00, where (3, is a root of g. Thus, generically, the quantifier-free for-
mula produced by Theorem 7 contains more atomic formulas and more distinct
polynomials when infinitesimals are required than when they are not.

3.2 A simpler substitution for infinitesimals

In this section we give a simpler substitution for infinitesimals — one that uses
fewer atomic formulas but which, more importantly, uses the same polynomials
as are used without infinitesimals. The key observation (see Theorem 3) is that
a* = —rfz(—s/r), so that if R =0 # r, the signs of a* and r give the sign of f,
at the common root of f and g.

Let f,7,s and a* be as before, but let g = az2% + byx + ¢4. Let prem(f,g) =
Tex + Sq, and note that ry = —r and s, = —s, since prem(f, g) = —prem(g, f).
Let by =1y = —r and let aj, = 2a48, — byrg = —149:(—54/7g) = 192 (—5/7).

Theorem 8 g(a, +¢€) < 0 is equivalent to

R>0Aa*a® <0Vpra® <0A (a*a® <0V R <0)
v
R:()/\(T:()/\pag<O\/a*pr§0/\ra;<O\/a*pr<0/\a;:()/\ag<0)

under the assumption a # 0 Ab*> —4ac > 0 for p = +1 and a # 0 Ab? — 4ac > 0
forp=—1.

PROOF. g(ap +€) < 0 is equivalent to g(ap) < 0V g(ap) = 0A (gu(ap) <
0V gs(ap) = 0Aay < 0). The first line of the substitution formula from the
theorem statement is equivalent to g(a,,) < 0 by Theorem 4 and Corollary 1, so
we focus on the g(a,) = 0 case.

g(ap) = 0 is equivalent to a*pr <O0AR=0. If R=r =0, f and g have the
same roots. In this case, g(a, + €) < 0 if and only if the roots are distinct and
the sign a4 is opposite of p, or ay, is a double root, in which case the sign of a4
must be negative: i.e. b> —4dac > 0Apa, <0Vb? —4dac=0Aa, <0. If p=+1
or b2 — 4ac > 0 this can be simplified to pa, < 0.

If R=0%#rAa*pr <0 then f and g have the single common root o, = —s/r.
In this case, a; = rg.(—s/r) = rg.(ap). Therefore, rg.(a,) < 0= g(a,+e) <0
and rg;(ap) > 0= g(ap +€) > 0. If rg;(ap) =0, @, is a double root of g and

a simple root of f, so g(ay, +€) <0 <= a4 < 0.
So, g(ap) = 0 A g(ayp + €) < 0 is equivalent to

R=0Ar=0Apag <0V R=0Aa"pr <0Ara; <0V (1)
RzO/\a*prSO/\r;«éO/\a;;:O/\ag<O

assuming a # 0 A b? — 4ac > 0 when p = +1 and a # 0 A b? — 4ac > 0 when
p=—1

If R=0#r, a" = a; =0 implies f,(~s/r) = gz(—s/r) = 0. But this means
f and g share a double root, which contradicts r % 0. Thus, R = 0 A a*pr <
OAT #0Aa; =0Aag <0 is false when a* = 0, and we may simplify it to
R=0Aa*pr <0Aa;=0Aa, <0. So (1) simplifies to

R=O/\(r:O/\pag<0\/a*pr§0/\m;<O\/a*p7°<0/\a;:0/\ag<0).

O

The previous theorem showed that when both f and g have degree two g(a, +
€) o 0 and f(8,+¢€) p 0 can be rewritten without radicals or infinitesimals using
the same polynomials that are used in rewriting g(«,) o 0 and f(8,) p 0 without
radicals. The next theorem shows the same thing when f has degree two and g
has degree one.

Theorem 9 If g = ux + v, where u # 0, and let § = —v/u, so that f(3) = 0.

Let R = R/(4a), noting that the division is ezact.
f(B+e)<0+=R<O0VR=0A(—ua*<0Va*=0Aa<0).

Note that we do not assume that a # 0.

PROOF. First note that R/(4a) = res,(f,g) = res,(g, f) = u*f(B), so that the

sign of R is the sign of f(3). Then note that prem(g, f) =g =ux+v,s0 7 =u

and s = v. Thus, by Theorem 3, a* = —rfy(—s/r) = —uf(8). Since u # 0,
sgn(fz(0)) = sgn(—ua*). So, f(+€) < 0 is equivalent to

R<OVR=0A—-ua*"<0VR=0Aa*"=0Aa<0.
N——
F(B<0 F(B)=0Afs(8)<0 F(B)=F2(8)=0Aa<0

O

The important thing about this theorem is that it shows that rewriting f(5+¢) <
0 (or < 0) does not require any polynomials that are not already required in
rewriting g(a,) o 0. Notice that g(a, + €) can be rewritten by specializing
Theorem 8 setting ay =0, by = u, ¢4 = v.

Finally, note that substitution in the case where both f and g are linear is
straightforward. If f = ax +b, « = —b/a, and g — ux 4+ v, then g(a) o 0 is
equivalent to a res;(f, g) o 0, and g(a+¢€) < 0 is equivalent to g(a) < 0Vg(a) =
0Aw < 0. Thus, for any combination of degrees of f and g we have substitutions
for roots, possibly with infinitesimals, that involve at most the coefficients of f
and g, discriminants, pairwise resultants, first principal subresultant coefficients,
and a* and ay. Using the substitutions from Theorem’s 8 and 9, we must use
the following slight modification of Theorem 7:

Theorem 10 3z[F] is equivalent to
Vie[(ai =0Ab; #O/\chi/bi Va; #0AND; > O/\(F

41
\Y

N Fai,—l))

D; > O/\Fai,+1+€
\/iGJ a’i:O/\bi#O/\chi/biJrevai?éO/\ \Y

Di > 0 A Fai,71+5
V
F_

The difference between Theorem 10 and Theorem 7 is that instead of assuming
D; > 0 for both Fy, 4 and F,, ¢, we assume D; > 0 for F,, 4, and
assume D; > 0 for Fy, _,4.. We do this, of course, to meet the requirements
of Theorem 8. However, it makes a certain sense, because now the D; = 0 case
is covered by just one subformula. Another tangible benefit of this comes from
the nice way we can substitute for f(a, +¢€) < 0, i.e. f evaluated to the right
of one of its own roots. This can now be rewritten as a < 0 when p = +1 and
a > 0 for p = —1, because the possibility of a double-root when p = —1 has
been eliminated.

4 A different view of virtual term substitution

The fundamental question to be addressed in the quadratic case of virtual sub-
stitution is this: What is the sign of g at root o, of f = az?+bx+c? (Assuming,
of course, that a # 0 and b?> — 4ac > 0.) The answer to this question has to
be expressed as a combination of polynomial equalities and inequalities in the
remaining variables — i.e. without x. In this section we give a geometric view
of how this is done and, based on that view, suggest alternatives to the substi-
tutions given in Theorem 4.

4.1 A geometric view of evaluation at roots of f

Recall that R = 4a"res,(f,g), so that R has the same sign as the product
of g evaluated at the two roots of f. There is a geometry to this problem of
determining the sign of g at oy, that can be seen quite clearly by considering r
and s in R = 4a(as® — srb + r?c) as variables and a, b, and ¢ as constant. R is
the product of two lines through the origin:

R = 4a2 (;H Vzlf*‘mcr + 5) (74’7 V;f*‘l‘wr + s)

For a specific g: If (r, s) falls on the first line g(ay) = 0. If (r, s) falls below the
first line g(ay) < 0. If (r,s) falls on the second line g(ar—) = 0. If (r,s) falls

10

below the second line, g(a—) < 0. In other words, the sign of g(ay,) is determined
by where (r,s) falls with respect to these two lines. Figure 4.1 illustrates this
for a specific f.

S -)=
g=2x2-1 9(@)=0
°
r
=07 -x2+3x -1
°
gat)=0

Figure 1: The region in which g(ay) < 0, for f = 22 + 2 — 1. Points in the
(r, s)-plane corresponding to two different ¢’s are shown.

Of course we do not want to evaluate —tvb-—dac VQZLMCT + 5 and =b=v—dac VQZLMCT + s
directly, because they involve radicals. Instead we evaluate R, a multiple of
their product. However, there are 9 possible combinations of sign for the two
linear factors, and only 3 possible signs for R. Thus, other polynomials need to
be introduced to distinguish between regions in which the sign of R is the same,
but the signs of the linear factors are different. This is precisely the role of r
and a*.

Since r = 0 = R > 0, r always separates the two regions in which R < 0.
Since 4a?, the leading coefficient of R as a polynomial in s, is always positive,
OR/0s = 4a(2as — rb) = 4aa* always separates the two regions in which R > 0.
Geometrically, r and a* do nothing more than distinguish between disconnected
regions in which R has the same sign. (Except at the origin, where they partition
R = 0 into five distinct regions.)

One might consider whether different polynomials could be used to distinguish
these regions. This would provide different substitutions than those from The-
orem 2.1 of [6]. Since the original substitutions are based on r and dR/9s, in
the following section we examine cases in which s and OR/Jr can be used as
separating polynomials instead.

4.2 Alternate substitutions

In this section we at a few alternatives to the substitutions based on r and
a* given by Weispfenning. Whether or not these substitutions may be applied
depends on the coefficients of f, but is independent of g.

11

If ac < 0 we note that R is the product of two lines with opposite slopes (see
the left plot from Figure 4.2). In this case s = 0 separates the R < 0 regions
just as does 2as — rb = 0, and OR/Jr = 4a(2cr — bs) = 0 separates the R < 0
regions just as does r = 0.

ac<O0 ac>0
OR/or=0
R>0 -

Figure 2: Plots of R, s and OR/Jr in (r, s)-space for ac < 0 and ac > 0.

If ac > 0, R is the product of two lines, both of which have positive slope if ab >
0, and negative slope if ab < 0 (see the right plot from Figure 4.2). In this case
s = 0 separates the R > 0 regions just as does r, and OR/9r = 4a(2cr —bs) =0
separates the R < 0 regions just as does 2as — rb = 0.

Based on these observations, a variety of alternate substitutions can be formu-
lated whose applicability is dependent on the signs of ac and R. Figure 4.2 lists
some of them (note that ¢* is used to refer to 2¢r — bs, so that OR/0r = 4ac*).
Each entry has been verified using quantifier elimination — Mathematica, Red-
log and QEPCAD B all verify them almost instantly. At first glance, replacing a*
or 7 in the substitutions from Theorem 4 seems to require assumptions about
the sign of R as well as ac. With one exception, however, a* and r only appear
in conjunction with the required sign condition on R, so that really only the
sign of ac constrains our use of alternatives for a* or r. The one exception is

R <0 = sgn(r) = sgn(abs)

R > 0 = sgn(a*) = sgn(—abc*)
If ac > 0 Ab? — 4ac > 0 then { R =0 = sgn(a*r) = sgn(—c*s)
R<0= (r=0<=s=0)
R>0= (a"=0<=c"=0)
R <0 = sgn(r) = sgn(—ac*)
R >0 = sgn(a*) = sgn(as)

If ac < 0 Ab? — 4ac > 0 then { R =0 = sgn(a*r) = sgn(—c*s)
R<0= (r=0<=c¢*"=0)
R>0= (a"=0<=s=0)
If ac # 0 A b? — 4ac > 0 then {R = 0= sgn(a*r) = sgn(—c*s)

Figure 3: Alternate substitutions.

12

substitution (3) of Theorem 4, in which pra’ < 0Aa*a’ is not explicitly guarded
by any sign condition on R. The following theorem, whose simple proof we omit,
states that R = 0 is actually implicit in this case, and therefore that we may
freely replace a* and r in the substitutions from Theorem 4 with the alternatives
given in Figure 4.2 based solely on the sign of ac.

Theorem 11 If R > 0 implies X <= a*a’® < 0 and R < 0 implies Y <=
pra® <0, then X can be used interchangeably with a*a® < 0 and Y can be used
interchangeably with pra® < 0 in substitution (3) of Theorem 4.

In asking whether these substitutions are useful, it is helps to consider what
happens generically. For example, when f = ax?+br+c and g = uz? +vz +w,
we have r = av — ub, s = aw — uc, a* = 2a’w — 2auc — bav + ub? and c* =
2cav — cub — baw. Clearly in this generic case, both s and c¢* are ”better”
substitutions than a*. In the non-generic case, when coefficients are constants
or are algebraicly related, any one of these can be good or bad substitutions.
What’s interesting is that can generate each of them and choose the substitution
that works best for each f,g combination in the context of the problem to be
solved. Section 5.1 provides an interesting application of this approach.

5 Examples

This section steps through two example computations — the first involving a
quadratic constraint, the second involving infinitesimals. The results of using
the original substitutions are compared with using the improved substitution for
infinitesimals from Section 3.2 and the alternate substitutions from Section 4.2.
One difficulty in going through examples of virtual term substitution in detail
is that the formulas are so large that they are hard to look at. We will endeavor
to ameliorate this by showing only key parts of the substituted formulas, and by
performing some reasonable simplifications before substituting. Also, we note
that R = a"res,(f,g), so where R appears in formulas we will use a’ R, where

R =res,(f,9).

5.1 An example from epidemiology

Andreas Weber and his colleagues have been working on applying symbolic tools
to investigations of epidemiological models, this example comes from his work.
In considering the existence of an ”endemic equilibrium” for the SEIT model
[3], a system of ODEs used to model tuberculosis and other diseases, one arrives
after straightforward calculations at the following formula:

AS[f(S)=0 A =S<O0AS—-1<0]

13

where f = v (82 — £1)5% + (dBira — d* B2 + d? 1 + Birire — dvfBe + vfBigrs —
dBars+dv i — p1vPe+ B1r1d)S+ Bad(d+v+13), all parameters are positive, and
(1 > P2. Note that the assumptions on the parameters imply that the coefficient
of S? is negative and the coefficient of SO is positive. We will apply virtual term
substitution to this problem. For the sake of brevity, however, we will not give
the a = 0 substitution or the oy substitution, both of which produce obviously
unsatisfiable subformulas. Thus, the quantified input formula is equivalent to:

aZ0AD>0ANg(a—1) <0Aga(a_q) <0,

where g1 = —S and g» = S — 1. Since the quadratic and constant coeflicients
have opposite signs, a % 0 A D > 0 is always true, so we will proceed with
g1(a—1) < 0A ga(a—1) < 0. Since p = —1, g1 and g have degree 1, and a
is always negative we will reduce a*a® < 0 A a®R > 0V pra® < 0A (a*a® <
0Va’R <0) to

—a*<O0A-R>0Vr<O0A(—a*<0V-R<0)
Following Weispfenning’s original substitutions restated in Theorem 4, we get:

—(dprry — Pod? + d*By + Prriry — vBad + vB1qra — Padry 4+ duvfy — Bivfs
+51T1d) <O0A —(d,@z(d +v+ Tg)) >0V-1<0A [—(dﬁlT‘Q - ﬁ2d2
+d251 + ,817”17"2 — I/ﬂgd =+ Vﬂ1q7"2 — ﬂgd’l’Q =+ dl/ﬂl — ,BlV,BQ =+ ,BlTld) <0
V — (dfB2(d + v +132)) <0

1 >

—(2vB} = Brvfa — dBira + Bod® — d2B1 — Biriry + vfBad — vf1qra + Badra]
—dvB — Birid) < OA —(B1(=B1v + rod + d? + rire + vqry + dv
—|—d7"1)) >0V1I<OA (—(2l/ﬂ12 — PrvfBe — dfBirs + 52612 — d251—

pirire 4+ vfad — vf1qra + Bodry — dvfB — firid) <OV —(B1(—Fiv
+rod + d? + rirg + vqre + dv + dry)) < 0)

Noting that dfB2(d + v + r2) is always positive and simplifying away inequalities
involving only constants, we get:

2007 — BBz — dpira + B2d? — d? By — P12 + vfad — vfiqra + Badry (2)
—dvfy — Bir1id > 0 A =P + rod + d* + 1112 + vgra + dv +dry <0

However, we are in the ac < 0 case, so we may replace a* with as according
to Figure 4.2. Since s; = 0 and s = —1 and a is known to be negative, this
alternate substitution is well worth taking. With it we get:

—(=0) <OA —(dfa(d + v +12)) > OV
1< OA[=(0) < 0V —(dBa(d + v +72)) < 0]
A
—(=(=1)) < OA =(B1(=Prv + rad + d* + rira + vgra + dv +dry)) >0
V1l < 0A
[—(=(=1)) <OV —(Bi(—Prv + r2d + d* 4+ r173 + vqra + dv + dry)) < 0]

14

After making the obvious simplifications we get:
—B1v + rod 4+ d? 4+ rire + vgro + dv + dry <0 (3)

The final simplification of (2) to (3) is not trivial. The assumptions on the
parameters do not imply the positivity of the extraneous polynomial. It is only
those assumptions in conjunction with —3v+rod+d?+riro+vqro+dv+dry < 0
that imply it. This is a simplification that Redlog’s simplifier, for example, is
not able to make.

5.2 Substituting infinitesimals

Let f = az?+bx+1 and g = uz?+vz—1. We consider the formula 3z[f < 0Ag <
0] under the assumption a,u > 0. First we will follow the original method, then
we will apply the improved substitutions for infinitesimals as well as alternate
substitutions from the previous section. Rather than write out the entire formula
here, we simply write out the set of polynomials appearing in the formula, and
show one representative subformula, the substitution for g(a—; +¢) < 0. In
addition to the coefficients of f and g, the following polynomials appear in the
formula produced by Theorem 7:

Df:b2—4a7 Dg=v2—i—4u7 r=av—ub, s=—a—u

= u? 4 2au + a? — vub + bav + av? — ub?

= —2a? — 2au — bav + ub?, ay = 2u? + 2au — vub + av? (4)
0. = 4u? — 2vub + av?, Ry, = —4a? — 2bav + ub?

*

" =2av —ub+ab, c; =av —2ub—vu

=l 8, =

The original substitution for g(a—1 4 €) < 0 is:

ga(@—1)<0
A 2ra < 0AaR,, >0
a*<0AR>0 —ra* <0 V — 2ua < 0A
V—r <0A % A A (2ra <0V aR,, <0))
(a* <0V R<0)) R=0 %
W —4ur <0AaR,, =0A2u<0

gz (0—1)=0A2u<0

Although the other substitutions are not shown, it should be clear that the
entire formula is constructed out of the polynomials in (4) and a,b, u,v.

The substitution given in Section 3.2 gives the following for g(a_; +¢) < 0:

(a*<OAR>0V—-r<0A(a*<0VR<O0))
Vv
R=0A(r=0A-u<0V—-a"r<0Ara; <OV —a*r<0Aa}=0Au<0)

15

Although the other substitutions are not shown, it should be clear that the
entire forglula is constructed out of a, b, u,v and the polynomials in (4) minus
Rgz and sz.

Clearly f falls in the ac > 0 case and g falls in the ac < 0 case discussed in
Section 4.2. Thus, we may choose alternate substitutions given there. This
leads to a substitution for g(a—1 +¢€) < 0 of:

(—abc* <OAR >0V —abs <O0A(—abc* <0V R <0))
V
R=0A(s=0A-u<0Vsc" <0Asc;, <0Vsc"<0Aus=0Au<0)

Whether or not this is ”better” than the previous formula depends on what
subsequent computation is desired. It is interesting, however, that it is trivial
to deduce that the input assumptions a,u > 0 implies s > 0, which then con-
siderably simplifies the formula. It is also interesting that after removing all
polynomials that, by inspection, never vanish given a,u > 0, this final version
contains only 2 polynomials that are not linear — R and Dy. In contrast, the
original contains 4 non-linear polynomials. The potential advantage to alter-
nate substitutions is that a program may quickly examine the alternatives and
decide whether, as in this case, one offers advantages over the other.

6 Improved bound for virtual term substitution

The fact that res,(f,g) = (a*? — b*?D)/(4a™) allows one to tighten the most
general degree bound given in Corollary 2.2 of [6]. Suppose that M is the
maximum total degree of any polynomial in the input, and that d is the greatest
degree in z of any polynomial in the input.

Theorem 12 The highest degree of any irreducible factor of a polynomial ap-
pearing in the formula produced by Theorem 2.1 of [6] is (d +2)M — 2d.

PrOOF. Note that the total degree of the coeflicient of ™ is at most M —m. The
candidates for the highest degree factors are b*> —4ac, b*, a* and a*? —b*?¢c. The
degree of b2 — 4ac is clearly bounded by 2M — 2. a*? — b*2¢ is the determinant
of the Sylvester matrix for f and g, and r and s are given by minors of the
Sylvester matrix. We will show explicitly that the largest irreducible factor of
a*? —b*?c has total degree at most (d+2)M —2d. A similar approach shows that
r and s have total degrees at most dM — 2d + 1 and dM — 2d + 2, respectively.
Thus, a* = 2as — br has total degree at most max((M —1)+dM —2d+1, (M —
2)+dM —2d+2)=(d+1)M — 2d.

resy(f,9) = (a** — b*?D)/(4a™), the degree of the largest irreducible factor of
a*? —b*?D is bounded from above by the degree of res, (g, f). Assume g has the

16

maximal z-degree d. The rows of the Sylvester matrix for g and f correspond to
xg,g, 2" 2f, 2" 1 f, ..., 2% f. The determinant is the sum of all products of one
element from each row and each column. Consider choosing elements to form
such a product. Suppose that ¢ and j, ¢ < j, are the indices of the entries chosen
from the first two rows. From columns 1,...,7 — 1 we must choose the a entry
in order to get a non-zero product (a has degree at most M — 2). From columns
j+1,...,d+ 2 we must choose the ¢ entry to get a non-zero product (degree
M). The submatrix remaining after all these choices is tridiagonal with a’s
below, b’s on and ¢’s above the diagonal. Any entry chosen above the diagonal
must be matched with an entry below the diagonal, so the average total degree
is (M —1). The product of the two entries from the first two rows has degree
2M — 2d + i+ j — 3. Thus, any term in the determinant has degree at most

(i—1)(M=2)+(j—i—1)(M—=1)+(d+2—5j) M +(2M —2d+i+j—3) = (d+2)M —2d.

[l

Corollary 2.2 of [6] gives a bound of (2d+2) M — 2d on any polynomial appearing
in the formula. The new bound is approximately a factor of two improvement,
although of course it is a bound on the size of irreducible factors. The bound
from Corollary 2.2 also assumes that the total degree of f is not more than the
maximum total degree of p(F'). The above analysis makes no such assumption.

7 Conclusion

This paper provides an analysis of the polynomials appearing in Weispfenning’s
method of quantifier elimination by virtual term substitution. Based on this
analysis, and simpler substitution is given for the evaluation of a formula at
T = a + €, where « is the root of a quadratic polynomial and e is a positive
infinitesimal. The paper proceeds with a new view on why certain polynomials
appear in substitutions and, based on this, proposes alternate substitutions.
These alternatives are not always applicable but, when they are, they allow
for an implementation of virtual term substitution that can choose amongst
alternatives in order to produce simpler formulas. Both of these improvements
are aimed at helping reduce the complexity of the result of quantifier elimination
by virtual term substitution, which is the method’s biggest problem.

8 Acknowledgements

This work was supported by NSF grant number CCR-0306440.

17

References

[1] BUCHBERGER, B., CoLLINS, G. E., Loos, R., AND ALBRECHT, R., Eds.
Computer algebra: symbolic and algebraic computation (2nd ed.). Springer-

Verlag New York, Inc., New York, NY, USA, 1983.

[2] DoLzMANN, A., AND STURM, T. Redlog: Computer algebra meets com-
puter logic. ACM SIGSAM Bulletin 31, 2 (June 1997), 2-9.

[3] vAN DEN DRIESSCHE, P., AND WATMOUGH, J. Reproduction numbers
and sub-threshold endemic equilibria for compartmental models of disease
transmission. Mathematical Biosciences 180 (2002), 29-48.

[4] WEISPFENNING, V. The complexity of linear problems in fields. Journal of
Symbolic Computation 5 (1988), 3-27.

[5] WEISPFENNING, V. Quantifier elimination for real algebra — the cubic case.
In Proc. International Symposium on Symbolic and Algebraic Computation

(1994), pp. 258-263.

[6] WEISPFENNING, V. Quantifier elimination for real algebra — the quadratic
case and beyond. AAECC 8 (1997), 85-101.

[7] WEISPFENNING, V. Simulation and optimization by quantifier elimination.
J. Symb. Comput. 24, 2 (1997), 189-208.

18

