U.S. NAVAL ACADEMY
COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

& %

An Algorithm for Improving System Safety via Software Fault Trees

Jones, Sean A. Needham, Donald M.(Advisor)

USNA-CS-TR-2005-05

May 26, 2005

USNA Computer Science Dept. o 572M Holloway Rd Stop 9F o Annapolis, MD 21403

An Algorithm for Improving System Safety via Software Fault Trees

S. Jones and D. Needham
Computer Science Department,
United States Naval Academy

Annapolis, Maryland 21402 U.S.A.
Ph: 1.410.293.6809 Fax: 1.410.293.2686
sean.jones@acm.org
needham@usna.edu

Abstract

Analysis of software fault trees exposes hardware and
software failure events that can lead to unsafe sys-
tem states, and provides insight on improving safety
throughout each phase of a system’s development. Al-
though fault trees can be pruned for low severity and
low probability nodes, few techniques exist for systemat-
ically improving system safety by focusing on cost anal-
ysis of a system’s fault tree nodes.

In this paper, we present an algorithm for system
failure mitigation, supportive of continuous software
evolution, based on the reduction of a fault tree into a
polynomial expression of degree g, where g is the num-
ber of inputs. We combine cost functions that model the
expense of improving component reliability into a vec-
tor field which provides a measurement of the degree of
difficulty of system improvement. The gradient of the
vector field is evaluated for vectors providing steep as-
sent towards the area of greatest safety improvement,
which in turn provides guidance on improving design
time system safety. We provide an example application
of our improvement algorithm, and examine improve-
ment verification of the resulting system modifications.

1. Introduction

In 1955 only 10 percent of weapons systems required
software, but by 1981 over 80 percent of such systems
required software support [6]. As the number of soft-
ware controlled systems expands, the issue of software
safety becomes an increasingly critical aspect of sys-
tem development. This is especially true in the fields
of aerospace, astronautics, and nuclear engineering,

where many analog safety critical systems have been
transformed into digital systems that provide greater
flexibility of control setups, improved runtime efficien-
cies, and reduced operating costs. However, the down-
side of transitioning to digital systems includes the dif-
ficulty of verifying the reliability of the software system.

Despite these issues, software control systems have
been introduced to many hazardous systems including
nuclear power plant controls, aviation guidance sys-
tems, and weapons systems. In such systems, the use
of software has been justified through the large number
of benefits such as flexible programming, increased ca-
pability, greater reusability, and decreased deployment
costs. The only alternative is an inflexible hardware-
only system which must be redesigned for each new
system or major system change and tends to be ex-
pensive. Another concern with the increased role of
software control systems is that the fast paced environ-
ments in which they run precludes manual intervention
and require automatic failover to backup systems [6].
While reliability in general is an important concern in
the software control systems, safety is highlighted as
one part that is required before software systems can
completely replace hardwired systems.

2. Background

In this section we review work related to our research
area, discuss system safety versus system reliability,
examine cost functions as a tool for predicting the cost
of system improvement, and explore fault tree concepts
relevant to our safety improvement algorithm.

2.1. Related Work

Current work focusing on software system safety in-
volves development of more accurate causal models

than the traditional accident-oriented models in use
today. Efforts such as Leveson’s work on a system-
theoretic approach to modeling safety in software-
intensive systems use systems theory approaches to
model accidents resulting from component interaction
rather than individual component failure [5, 1, 4].
Leveson’s approach is similar to our work in its focus
on the composite causes leading to a system failure, but
unlike our approach, focuses on post-accident analysis
rather than design time safety improvement.

Our work is similar to Sullivan’s approach to con-
verting fault trees into combinatorial representations
[9]. However, Sullivan’s approach requires selectively
reverse engineering a specification from which well-
formed inputs, as well as input from an oracle, are
derived, and yields a large test suite that covers all
inputs up to a given size. With our approach, the in-
put space is made manageable via the use of a cost
function vector field, allowing a greatly reduced state
space from which to select improvement to meet the
targeted safety goal of the fault tree’s root.

Finally, our work is similar to Coppit’s effort [2]
on evaluating the cost effectiveness of developing and
validating complex safety-critical systems through dy-
namic fault tree analysis of fault-tolerant systems [3].
However, where Coppit focuses on the specification am-
biguity regarding the simultaneous occurrence of de-
pendent failure events, our work focuses on the failure
probability of components leading to a specific hazard
at the root of the fault tree regardless of any failure
simultaneity [11].

2.2, Safety vs. Reliability

Safety and reliability are two closely related terms
when considering software systems. While it is often
true that a safe system is also a reliable system, the
inverse does not necessarily hold since system speci-
fications dictate the difference between a safe system
and a reliable system. If the specifications include the
necessary safety requirements, then a system which is
reliable will also be safe. Since this is often not true,
the differentiation of safe and reliable is required [7].

The reliability, rather than safety, of individual com-
ponents of a system are typically considered, because
it is often assumed that components are simple enough
to be viewed as a basic input. If a component is too
complicated, or could be a safety concern, then it is no
longer viewed as a black box. In this case, the compo-
nent’s fault tree is integrated into the system fault tree
forming a composite tree that can accommodate failure
probabilities for both the hardware and software of a
system.

2.3. Cost Functions

Any design change, component improvement, or
component redesign has costs attached to it which can
be used to yield cost functions describing how diffi-
cult or costly the changes are. Without an accurate
cost function, the process of making a design safer will
result in an over-designed, probably over-budget sys-
tem. Although cost functions can combine all possible
costs (such as retooling costs, redesign costs) in terms
of some quality, we consider cost functions exclusively
from the perspective of failure rate quality. It should
be noted that the quality chosen impacts the character-
istics of the cost function including range, asymptotes,
and slope. A cost function for failure rate will have a
positive asymptote at x = 0 and continue to x = 0.
Figure 1 shows a representative cost function for failure
rate. The x-axis of Figure 1 is the failure rate of the
system. As expected it grows in an asymptotic fashion
as the failure rate approaches 0. The y-axis represents
the relative difficulty of reducing the failure rate. Cost
function plots such as that shown in Figure 1 can be
used as a comparison with other component cost func-
tions.

13
1z

10

0:2 0:4 D:E D:S i
Figure 1. Representative Cost Function

In order for a cost function to be used to predict
how much work is required for an improvement, there
must be a way to infer a measurement unit, such as
man-hours, from the function. Such inference requires
a reference function serving as a scaled version of the
component cost function such that precisely how many
man-hours are required to improve that component
from a known initial value to a predefined final value is
known. For software development companies operat-
ing at CMM level 3 or higher, such reference functions
may be reliably available from measurements and met-
rics gathered from previous projects [8]. For companies
without such references, a less precise approximation or
educated guess may be substituted with a correspond-

ing reduction in confidence in the reference function
accuracy. The value of the integral of the cost function
between those two points then can serve as the conver-
sion factor between the integral of the cost function and
man-hours to complete the work. An example of how
the conversion works can be found in section 4.3. Fig-
ure 2 shows a representative calibration cost function.
The shaded area represents the integral of the function
that is equal to a known quantity of man-hours.

13
1z

1a

oz 0.3 0.6 o.d 1

Figure 2. Example Calibration Cost Function

2.4. Fault Trees

Fault trees are interdisciplinary, finding application
for both hardware and software systems in many engi-
neering disciplines, including aerospace, astronautics,
and nuclear engineering. Fault trees originated at Bell
Labs in the 1960s in support of the U.S. Air Force’s
Minuteman Missile Program [10]. Fault trees are com-
posites of fundamental entities known as events and
gates, which form the nodes and connections of the
tree. The root of a fault tree is the pre-defined haz-
ard event which the designer of the tree seeks to either
prevent or minimize the probability of occurring. A
hazard event is any event in a system that can cause a
variety of undesirable results such as loss of life, equip-
ment loss, unacceptable loss of functionality, or unde-
sirable operating conditions. The leaves of the tree
represent the fundamental events (inputs) to the sys-
tem. The root and leaves are connected by a series
of intermediate events through Boolean operators as
shown in Figure 3. In a fault tree, because the focus of
the tree is on the probability of failure rather than the
probability of success, Boolean true is defined some-
what counter-intuitively as the failure of a node and
Boolean false is the success of a node. Because inter-
mediate events are themselves Boolean expressions, the
entire tree can be expressed as a composite Boolean ex-
pression that can be simplified using straight-forward

algebraic manipulations. When the probability of the
leaf elements are inserted into the Boolean expression
describing the system, a probability of occurrence can
be determined for the specified hazard. For all but the
simplest systems, computing the probability of occur-
rence is a non-trivial task because of the computation
of the conditional probabilities at each node.

Figure 3. Example Fault Tree

In Figure 3, the leaf nodes are labeled d, e, f, and
g; and the internal nodes are a, b, and c. In order
for node b to enter a failure state, both nodes d and e
must fail, however for node c, either nodes f or g can
fail to cause the system to enter a failure state. Node
a is similar to node ¢ in that either nodes b or ¢ can
fail to create a failure condition. When node a is in
a failure condition, the hazard described by the fault
tree occurs.

In compute the probability of a fault tree entering
a hazard state, we must consider equations for AND
or OR node systems. Equation 1 is for an AND node
system such as in Figure 4 and the equation 2 is for
an OR node system such as in Figure 5. In equation 1
the failure probability of the two children, a and b, are
multiplied together because the probability of an AND
system requires both two fail. Since an OR system has
the opposite probability relation of an AND system the
minus terms are required to be able to use the same
type of input probability terms [10].

a=be (1)
a=1-—(1-0)(1-c¢) (2)

3. Improvement Algorithm

In this section, we present an algorithm for improv-
ing the structure of a fault tree in a manner that im-
proves (decreases) the probability of occurrence of the
hazard at the tree root. The prerequisites of the im-
provement algorithm requires: that a fault tree exists
to describe how a hazard can occur, the failure prob-
ability of every component, and the goal failure prob-
ability, G, are known or can be approximated. The

Figure 4. AND probability relationship

Figure 5. OR probability relationship

improvement algorithm is based on the reduction of
any fault tree into a polynomial expression of degree
g, where ¢ is the number of inputs, by a post order
traversal of the fault tree. For any one value of P there
are an infinite number of sets of inputs. The objective
of our algorithm is to pick a unique set of inputs to P,
such that P is equal to a goal value. In order to se-
lect the unique set of inputs in this manner, additional
information, such as cost functions, is required.

Many hardware components have cost functions
that describe how expensive (in man-hours) it is to
improve the reliability of the components. Likewise,
software components typically have historical data, or
approximations, that can fill the role of cost functions
in our algorithm. The combination of the cost func-
tions for all the components yields a vector field, V,
in which each dimension of the vector field is the cost
function of a component. An example is where the cost
functions c0, cl, ¢2, ¢3, ¢4, ¢5, and ¢6 would create the
vector field < 0, c1, ¢2, €3, ¢4, ¢5, ¢6 >. The vector field
is negated in order for the direction to point towards
the area of greatest safety rather than least safety. Fig-
ure 6 is a vector field formed from combining two cost
functions. The arrows point toward increased safety.
The vector field described in Figure 6 is < wo%, IO% >,
The size of each arrow shows relative increase in diffi-
culty of improvement.

The gradient of V is evaluated at a point p (where

POl Y e Y Y
P Y Y R e N Y
P N N Y
- A Y Y
A Y e R . N Y R Y
A Y L T
P R Y N Y A T R O
A A B A N A Y A AN
aF K K K N K F FOF F OF ¥
K ¥ K K K F F F F F F FF
& x ¥ & wF O F F F F P F
s K F K FFF W F O FFFF
A A A A A A AN AN A N]
T A A A A A A A

Figure 6. Sample Vector Field

p is a point in g dimensional space), —VV(p), yields a
vector that has the steepest assent towards the area of
greatest safety.

The initially known quantities are p;, P(p;), V(pi),
and the desired value G. The object is to find a py,
such that P(py) = G. Starting at the point p;, the
vector V(p;) will point towards the level curve defined
by P = G. A scaling factor, k, is then used to stretch
the vector V(p;) so that it intersects the level curve
P = G. The point where kV (p;) intersects with P = G
is py. Using substitution, the polynomial expression
P with g unknowns is changed to have one unknown,
k. We call the new polynomial expression P;. An
example, based on Equation 1, of the substitution is:

P(bi,ci) = bef
V(b)) = k<ef>
Py(bsyci) = (by —ke)(c; — kf)

There will be at most g real roots of P,. The real
root of k that creates the smallest vector kV (p;) such
that p; + kV (p;) yields a result with in the domain of
(0 <py <1). Once py is known it can be compared to
p; to determine the percent change in the reliability of
each component.

The man-hours required to improve a component
from its initial reliability to its final reliability can be
found by taking the integral of the cost function for
that component from the initial reliability to the final
reliability. The accuracy of the work estimate relies on
how accurately the cost function models reality. For

companies that have sufficiently refined metrics such
as those found in companies at CMM level 3, the cost
functions may be well defined [8]. For other companies,
the cost function may be, at best, only an approxima-
tion.

4. Application

In this section, we apply the improvement algorithm
to a maintenance scenario of safety critical software in
which a client has requirements related to the overall
safety of the system, and cost functions that can be
applied to system components.

4.1. Example Improvement Scenario

We examine the scenario of a customer requesting
that additional features be added to a safety critical
software system. The customer specifies that the safety
of the modified system can be no worse than the safety
of the original system. The original system was veri-
fied by program proving, however due to cost consider-
ations the progress of program proving is undesirable
for the modified version. The improvement algorithm
offers an alternative to program proving in such a case.

4.2. Prerequisites

In order to use the improvement algorithm in this
scenario, a few things must be known. First, the prob-
ability of each hazard occurring in the initial system is
required. This may involve the construction of fault
trees and computation of each probability. Second,
fault trees need to be constructed for the modified sys-
tem for each hazard. Third, the present failure proba-
bility of each of the components must be known. The
fourth, and final prerequisite, is that cost functions be
available for the improvement of all components. Table
1 lists the initial failure probabilities of all the variables,
the cost functions, and the desired failure probability
of the system.

4.3. Verifying the Modified System

In order to verify that the situation is improved
through the application of our improvement algorithm,
the probability of each hazard occurring in the mod-
ified system is calculated. Based upon these calcula-
tions, a set of hazard conditions is created in which
the modified system does not meet the safety require-
ments. The improvement algorithm is then executed
on the fault tree for each hazard in the set. This re-
sults in a list of components that need to be improved

variable | value || variable | value
p0 0.35 c0 m(} T
pl 029 | el %
p2 0.41 c2 —5.13
3 0.32 c3 :r01-56
p4 0.49 c4 xolm
J225) 0.25 ch mo%
6 0.20 | 6 e
P 0.55 G 0.3

Table 1. Initial Values

and by what amount order to meet the desired failure
probability. While the list produced may not be the
cheapest possible solution it is not an expensive solu-
tion.

The rest of this section examines the improvement
process for a single hazard, h0. The fault tree in Fig-
ure 7 represents all possible ways for the software sys-
tem to cause h0. The cost functions for each of the
seven inputs are labeled 0 through ¢6. The initial fail-
ure probabilities of each component are similarly p0
through p6. Node 0, for example, would have a cost of
c0 and a probability of failure of pO.

The fault tree probability equation, P, is created
from Figure 7, and is:

P(p0,pl,p2,p3,p4,p5,p6) =
I—(1—-(1—(1=p0)(1—(p1)(p2))))
(1= (P3)(1—(1—p4)(1—p5)(1—p6))))

Once the probability of the hazard is computed it can
be compared to the desired probability, G. Since the
probability of hazard is greater than G the next step
of the algorithm is executed in which a vector field is
created from the seven cost functions such that:

V(c0,cl, e2,¢3,c¢4,¢5,c6) =
1 1 1 1 1 1 1

P —
2047 £0.67 1.0.437 2.0.567 1,0.787 4.0.58 7 4.0.35

The gradient of V at the initial point
(0, p1,p2,p3,p4,p5,p6), provides the direction
towards the desired failure probability curve. Once
the gradient is known, it is combined with P to create
an equation only in terms of the scaling factor k.
The scaling factor k, is the smallest positive root of
Py, in this case £ = 0.083321. The scaling factor is
then substituted into individual component equations
to find the failure probability of each component
necessary to have the desired failure probability for
the system. The failure probability of each component

Figure 7. Fault Tree for Hazard h0

variable | value | % improvement | cost
p0 0.22 37.1 8.8
pl 0.11 62.1 19.9
P2 029 | 293 77
p3 0.16 50.0 14.7
p4 0.34 30.6 12.2
) 0.06 76.0 24.4
p6 0.05 75.0 13

P 0.3 45.5 100.7

Table 2. Final Values

required to meet the system requirements is shown in
Table 2.

Assuming that the calibrated cost function is the
cost function c0 and that the integral of c0 from 0.7 to
0.5 is equal to 10 man-hours, the cost to improve the
system can be predicted by using this value to convert
the integrals of the other cost functions. In the case
of this example 100.7 man-hours would be required to
improve the failure probability from 0.55 to 0.3.

5. Conclusion

Analysis of software fault trees exposes hardware
and software failure events that can lead to unsafe sys-
tem states, and provides insight on improving safety
throughout each phase of a system’s development.
Our work represents a first step in investigating cost-
sensitive methods of verifying safety critical software
systems. We presented an algorithm for system failure

mitigation based on the reduction of fault trees into
polynomial expressions. Cost functions were applied
to the nodes of the fault tree to identify nodes where
improvement will effectively lead to increased safety of
the system represented by the fault tree. We provided
an example application of our improvement algorithm,
and examined improvement verification of the resulting
system modifications.

Future work in this area focuses on the efficiency of
the improvement algorithm, which is currently far from
optimal. Areas where improvements could be made in-
clude the possible use of stream functions to find the
cheapest path between the initial and goal fault prob-
abilities and the use of Lagrange multiplies to avoid
the scalability issue raised of finding the roots of high
degree polynomials. Other future work includes de-
veloping the improvement algorithm from a research
project into a tool that can be readily used by software
developers.

References

[1] P. Checkland. Systems Thinking, Systems Practice.
John Wiley & Sons, New York, 1981.

[2] D. Coppit and K. Sullivan. Sound methods and effec-
tive tools for engineering modeling and analysis. In
Proceedings of the 25th International Conference on
Software Engineering, pages 198-207, Portland, Ore-
gon, 2003.

[3] J. B. Dugan, S. Bavuso, and M. Boyd. Dynamic fault-
tree models for fault-tolerant computer systems. IEEE
Transactions on Reliability, 41(3):363 77, Sep 1992.

[4] J. Leplat. Occupational accident research and systems
approach. In J. Rasmussen, K. Duncan, and J. Leplat,

[10]

[11]

editors, New Technology and Human Error, pages 181—
191. John Wiley & Sons, New York, 1987.

N. Leveson. A systems-theoretic approach to safety
in software-intensive systems. [EEE Transactions on
Dependable and Secure Computing, Jan 2005.

N. G. Leveson. Software safety: Why, what, and how.
ACM Computing Surveys, 18(2):125 163, Jun 1986.
N. G. Leveson. Software safety in embedded computer
systems. Communications of the ACM, 34(2):34 46,
Feb 1991.

M. C. Paulk, M. B. Curtis, B. Chrissis, and C. Weber.
Capability Maturity Model for Software, Version 1.1.
Software Engineering Institute, 1993.

K. Sullivan and et al. Software assurance by bounded
exhaustive testing. In Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis, page 133142, Boston, 2004.

W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F.
Haasl. Fault Tree Handbook. U.S. Nuclear Regulatory
Commission, Washington D.C., 1981.

G. Weinberg. An Intorduction to General Systems
Thinking. John Wiley & Sons, New York, 1975.

