
A Composite Agent Architecture for Multi-Agent Simulations

Michael VanPutte

Brian Osborn

MOVES Institute

Naval Postgraduate School

1 University Circle

Monterey, CA 93943-5118

831-656-4074, 831-656-3733

michael.vanputte@us.army.mil, baosborn@nps.navy.mil

Keywords:

multi-agent systems, multi-agent simulations, information assurance

ABSTRACT: The MOVES Institute’s Computer-Generated Autonomy Group has focused on a research goal of

modeling complex and adaptive behavior while at the same time making the behavior easier to create and

control. This research has led to several techniques for agent construction, that includes a social and

organization relationship management engine, a composite agent architecture, an agent goal apparatus, a

structure for capturing and applying procedural knowledge (tickets), and the ability to bring these technologies to

bear at the right time and in the proper context through connectors. This paper provides an overview of the

architecture and discusses the implementation of this architecture in a multi-agent simulation of the information

assurance domain.

1. Introduction

In 1999 the Naval Postgraduate School MOVES

(Modeling, Virtual Environment, and Simulation)

Institute added a new research direction in the area of

multi-agent systems and computer generated

autonomous behavior. From the outset, MOVES agent

research has had two goals. First, to bring rich,

complex, adaptive behavior to Department of Defense

(DoD) related models, simulations and other systems

through the application of multi-agent technology.

And second, to make this adaptive behavior far easier

to achieve and control. This latter characteristic will

allow problem solvers to focus their attention and

intellect on the agent’s problem solving behavior and

not on the implementation mechanism. The intent is to

shift the focus from “how do we do this?” to “what can

we do with this?”

This paper describes several innovations in the field of

agent-based system simulation using information

assurance as the domain of discourse and introduces

two new research areas being investigated in the

MOVES Institute.

 Portions of this paper originally appeared in [1].

2. Semi-Fluid Software Structure and

Emergent Behavior

2.1 Introduction

Software development has traditionally focused on

building software based on rigidly structured

architectures with terms like “structure” and

“architecture” usually referring to fixed and immutable

relationships among the components inside the

software. Many in the computer science and software

engineering community assume structure must be rigid

and tightly bound at design time if a program has any

chance of meeting its design goals. This outlook is

analogous to our view of a new highway system that is

designed on paper and constructed with concrete and

steel to meet the forecast needs of a growing city.

Once built, the highway system remains fixed and

static unless new construction occurs. It would be

absurd to expect it to mold itself into new forms to

meet growing infrastructure and changing traffic

patterns. This same thinking has held true for

traditional software designs. The architecture is fixed

at design time; its structure is inert.

The study of computer generated autonomous behavior

is supplementing this thinking by exploring the use of

multi-agent systems (MAS) to build software that

modifies its own structure, within a set of constraints,

to maintain close contact with a dynamic environment.

MAS research at the MOVES Institute is founded on

2

the premise that semi-fluid software structures are not

only possible, but essential to developing truly adaptive

simulations and modeling emergent behavior.

2.2 A Design Paradigm Shift

A real challenge when first encountering multi-agent

system simulations is coming to grips with emergent

behavior in software. Traditional problem solving in

software engineering is direct in the sense that the

developer conceives of an algorithmic solution and

transfers that solution to software. Software

development rigor and practice is used to insure the

code will produce an exact execution of the algorithm.

In direct solutions, the programmer knows exactly how

to solve the problem and the software implements that

solution precisely. This approach is fine for problems

where the domain is well know, and the relationships

are static, finite and well defined. Direct solution

systems are somewhat analogous to well-behaved

functions. For a given input, the designer knows what

to expect for the output. Surprises are a clear

indication of a bug in the system.

In sharp contrast, surprises in MAS simulations are not

only okay, but are the desired end, as long as the

system operates within boundaries that are explicitly

determined. The software is intended to surprise the

designer within a system of constraints! This is

possible through the use of software agents that

discover an indirect path to the solution, thereby

allowing for the possibility of arriving at a solution the

designer may not have previously considered. In this

way, multi-agent systems are capable of producing

innovative solutions. In the field of information

assurance, the relationships between the human actors

and the technological components are dynamic and

complex. The ability to achieve malicious goals is

often an ‘out-of-the-box’ implementation of existing

capabilities. An innovative MAS system is exactly

what is needed in exploring the IA domain.

3. Information Assurance

Information Assurance (IA) is concerned with

“…protect(ing) and defend(ing) information and

information systems by ensuring their availability,

integrity, authentication, confidentiality, and non-

repudiation” [2]. The system is not restricted to

technological components; it includes human actors

that interact with the technical components.

IA deals with adaptable humans and computational

devices that are interconnected through webs of

communications networks. Software and devices adapt

(through human interaction or autonomously) to

perform tasks. Humans adapt themselves,

communication links, devices, and the software

running on those devices (sometime unknowingly) to

better achieve their goals. The domain is a highly

connected, dynamic environment, where small changes

in one part of the environment can have tremendous,

cascading effects in other parts.

This paper introduces a multi-agent simulation that is

an implementation of a computational model of IA [3].

MARIA (Multi-Agent Research in Information

Assurance) implements five agent-based system

simulation innovations and provides an environment

where investigators can conduct research and gain

insight on information assurance.

4. Innovations in Agent Research

The Computer-Generated Autonomy Group has

developed five key technologies that further the

research goal of making far more complex and

adaptive behavior easier to create and control. The key

technologies include a social and organizational

relationship management engine, a composite agent

architecture, an agent goal apparatus, a structure for

capturing and applying procedural knowledge (tickets),

and the ability to bring these technologies to bear at the

right time and in the proper context through

connectors.

4.1 Social and Organizational Relationship

Management Engine

The modeling and simulation community is continually

being challenged to create rich, detailed models of ill-

defined problems. Many of these problems are

complex because of the involvement of human

decision-making and organizational behavior. Humans

and organizations have multiple levels of internal roles,

goals and responsibilities, frequently conflicting with

each other. While contemplating almost any decision,

humans must evaluate a myriad of goals that they are

currently attempting to achieve. These goals are

sometimes supportive of each other, but often they are

in conflict. Developing simulations that are capable of

capturing this complex, often unpredictable, behavior

is essential to realistically modeling large organizations

accurately.

In an effort to simplify the development of MAS

simulations and ease the integration of software agents

into existing simulations, an agent modeling

architecture called RELATE was created [4].

3

RELATE is an agent architecture for organizing agents

into relationships, and allowing for functional

specialization. The RELATE design paradigm focuses

on the relationships between individuals and within

organizations. By taking a relation-centric view of the

problem domain the developer is encouraged to

identify the various roles that are assumed by members

belonging to each relationship. These roles have

certain responsibilities and commitments, which tend

to be manifested as additional goals that must be

addressed by the various members of the relationship.

Once an agent is a member of a relationship, it must

base its action selection on its personality, its particular

concern for each goal, and the state of achievement of

each goal. Entering into a relationship connects or

binds agents to one another, resulting in the assignment

of new roles, goals and responsibilities. Relationships

are often formed to achieve something that is not

achievable by any one individual. In this way, agents

can take advantage of shared resources and capabilities

to achieve a goal that would otherwise be unattainable.

RELATE focuses the designer on six key concepts of

MAS simulations: relationships, environment, laws,

agents, things (objects), and effectors. A library of Java

classes was developed that enabled the researcher to

rapidly prototype an agent-based simulation,

supporting cross-platform and web-based designs.

In MARIA, researchers declare Organizations. An

organization is a collection of actor roles and

organizational information assurance policies.

Organizations range from formal enterprises

(commercial and government entities), to informal

collections of individuals with a common goal (hacker

clubs, social groups, etc). The organization may

represent a team (heterogeneous, interdependent roles)

or a group (homogeneous, interchangeable roles) [5].

Roles are placeholders, initially defined but unfilled by

actors and represent a collection of behaviors specified

for an organization. Some of the typical roles critical

to an IA simulation are system users, system

administrators, managers, cyber attackers, and vendors.

A role consists of prerequisite Role Requirements, a set

of Role Goals, and Tokens. Role Goals are desires an

agent pursues. Actors who commit to a role are given

goals that are then added to the actor’s goal set.

Roles have requirements that must be met prior to

assuming a role. These prerequisites may be objects,

prerequisite roles, or some particular actor capability or

personality set attribute. Roles may also have

corequisites that must be maintained. Failure to

maintain corequisites could result in the role being

revoked by the organization (being fired, thrown out of

a group, etc.)

4.2 Composite Agents

Multi-agent system simulations typically consist of

numerous high-level agents that represent entities

operating in a common, shared environment. The

agents residing in this shared environment, referred to

as the “outer environment”, interact with one another

and the objects in the environment. They sense their

environment, interpret the sensory input and make

decisions as to what actions to take. These actions in

turn affect the environment either directly through

agent-to-environment interactions or indirectly through

agent-to-agent interaction. In an effort to capture the

strengths of both cognitive and reactive agents, while at

the same time simplifying the design of such a complex

agent, a Composite Agent architecture has been

developed.

Composite Agents (CA) are composed of combinations

of cognitive and reactive agents (Figure 4.1). They

contain a set of cognitive Symbolic Constructor Agents

(SCAs) that work with sensory streams (or

impressions) from the outer environment to create a

symbolic inner environment (Einner) representing the

agent’s perspective of the outer environment (Eouter).

The SCAs define the agent’s sensor capabilities and are

tailored to sense specific aspects of the environment.

They also act to control and filter impressions of the

outer environment, so the agent isn’t overwhelmed in a

rich outer environment. Einner is influenced not only by

what the SCAs sense, but also by the CA’s internal

state. For instance, in a predator-prey simulation, if the

predator is hungry and senses an animal, it would show

up in Einner as food. On the other hand, if the predator

has just eaten, then the animal would appear as just

another animal in Einner.

Figure 4.1 A Composite Agent

4

The symbolic inner environment is the agent’s

perception of the shared outer environment within

which it operates. Einner has little resemblance to the

actual outer environment, rather it is an encoding of

Eouter optimized to suit the Composite Agent’s specific

function. The role of an SCA is not unlike the role of

radio navigation aid used by a pilot. The navigation

aid senses radio signals in the outer environment and

converts them into directional information that the pilot

can use to navigate the aircraft. The inner environment

used by the pilot for making decisions has little

resemblance to the view looking out the window, but it

is optimized for use by the pilot in navigating the

aircraft.

Combined with the SCAs is a set of Reactive Agents

that operate on the symbolic inner environment and

generate actions for the CA to perform. Each RA has a

set of possible goals and an apparatus for managing the

process of selecting the active goal or goals.

In MARIA there are two subclasses of agents; actors

(representing people) and infrastructures (representing

an organization’s information resources and processing

capabilities).

A MARIA actor is a modified composite-agent

architecture (figure 4.2). An actor consists of

• Sensor set – Set of SCA’s

• Role set – Set of RA’s

• Ti – Token set (resources and access

rights)

• Ki –knowledge set

• ESi – emotional state,

• OPi – observable personality

• Si – skill state

Figure 4.2 A MARIA Composite Agent

The Role set is the set of all Organizational Roles to

which an agent has committed. This is implemented as

a set of RAs , where each RA represents a role. An

implied property for the actor is the set of all associated

Goals SGi. This is a set of all goals from all roles

assigned to an actor. The set of goals an actor

possesses from the numerous roles he is assuming

defines the actor’s behavior.

These goals are prioritized based on the actor’s internal

state (emotional, personality, and skill attributes) and

the perception of the environment. Actors choose high

priority goals and pursue them until they are

completed, another goal receives a higher priority, or

the agent decides the goal is no longer achievable.

The knowledge set Ki represents procedural problem

solving capabilities. This knowledge base provides the

actor with procedures to be used to achieve a goal.

The Actor’s tokens Ti represent the collection of all

objects the actor has collected.

The Personality state determines the actors’

commitment and dedication for each goal. These are

used by the goal apparatus to personalize the agent’s

goal prioritizing – thus creating outwardly observable

differences in actor behavior.

An Actor’s emotional state consists of a set of

attributes that are an actor’s current internal condition

or feelings at any instant in time. These states

represent a subset of the individual’s emotions. These

attributes may include the agents feeling of loneliness,

security, self-worth, and excitement.

The actor’s Observable Personality values represent a

relatively static set that defines that actor’s long-term

behavior. These values include propensities for risk,

loyalty to organizations, ethics, etc.

Skills represent a abstract set of ability values the

actors possess. These skills may include organizational

technical skills, social, information technology,

security, or management skills for example.

 The architecture, when combined with the other

innovative agent components facilitate the creation of

complex agent behavior through relatively simple

components.

4.3 Reactive Agents and Goal Management

Composite Agents contain numerous Reactive Agents

(RAs), where each reactive agent is responsible for

promoting a specific behavior of the Composite Agent.

The set of RAs taken as a group, define the Composite

5

Agent’s set of high-level behaviors. The RAs operate

within the world of the inner environment. They take

as input sensory information from Einner, and produce as

output actions for the agent to perform.

Each RA has one or more goals specific to furthering

the RA’s behavior or function. So at any given time

there are numerous goals competing for the Composite

Agent’s attention. Just as humans have multiple goals

(sometimes conflicting), an agent too has multiple

goals it wishes to satisfy. In human decision-making,

goals are constantly shifting in priority, based on the

person’s context and state. Agents can mimic the

flexibility and substitution skills of human decision-

making through the use of a variable goal management

apparatus within the RAs. It is from this goal

apparatus where contextually appropriate, intelligent

behavior emerges. RAs interpret the symbolic inner

environment and through their goal apparatus, process

this information to balance their goals and return an

appropriate action for attaining their highest priority

goal or goals (Figure 4.3).

Goals have four components; a state, a measurement

method, a weight, and action or set of actions for

achieving the goal. The goal’s state is an indication of

whether a goal is in an active, inactive, or some other

domain specific state. The measurement method

translates the sensory input received by the RA into a

quantifiable measure of the current strength of a goal

and how well it is being satisfied. This permits an

agent to prioritize goals and adjust goal states based on

context. A goal may also have a weight attached that

can be used to adjust the importance or priority of the

goal based on experience. Tied to each goal is an

action or set of actions for achieving the goals under

varying circumstances. The end result is that within

the RA goal apparatus there are multiple goals that are

constantly changing -- moving up and down -- with the

top (active) goals dominating the agent and its

behavior.

Figure 4.3 Reactive Agent

Additionally, agents can discard behaviors that do not

further their goals, and increase the use of behaviors

that have proved successful in reaching goals. This

simple behavior serves as a reactive learning system

where the agent learns from the environment, based on

“what works” with no human expertise or intervention.

Goal switching based on a dynamically changing

environment produces innovative and adaptive

behavior, however, it is desirable to balance this with

doctrinally correct and appropriate actions. This

balance is achieved through the encoding of procedural

knowledge in a data structure called tickets.

4.4 Tickets

Symbolic Constructor Agents and the goal apparatus

were developed to control the agent’s sensory

capability and decision-making. In order to provide

agents with rich procedurally oriented knowledge

while still supporting adaptive behavior the agents

knowledge base and action set has been encoded in a

data structure called tickets. Tickets allow reactive

agents to apply procedural knowledge in context. They

define the agent’s action set, i.e., its means to achieve

its goals. They are used to organize procedural

knowledge and provide the ability to balance doctrinal

behavior with adaptive, innovative action, resulting in

enriched problem solving behavior.

Tied to each of an agent’s goals are one or more tickets

that define how to achieve the goals. The tickets may

have prerequisites or co-requisites that must be met in

order for a ticket to be active (see connectors below).

Additionally, tickets are composed of one or more

6

frames, with each frame being one or more actions or

behaviors. Various types of tickets have been defined,

with choices ranging from uninterruptible to

interruptible, and sequential to non-sequential.

Simply encoding procedural knowledge and linking it

to various goals is not sufficient for creating intelligent

behavior. The desire is to apply the most appropriate

procedures for a given situation. The problem is that in

a dynamic system the “given situation” not only

changes constantly, but also is so complex, the system

designer can’t conceive of and account for every

possibility. Therefore, the mechanism for determining

the “most appropriate” procedures must be flexible and

able to support the same level of complexity as the

changing contexts of the dynamic system. The ability

to take the correct action to match the situation is

provided through the use of an apparatus called

connectors.

MARIA actors possess two types of tickets; goal

tickets, and knowledge tickets. Goal tickets are

relatively static procedural steps that are bound to goals

at compile-time. Knowledge tickets reside in the

Knowledge set (Ki). These tickets bind to goals and

other tickets at run-time, creating dynamic,

unpredictable, yet appropriate behavior. This run-time

binding is also performed through connectors.

4.5. Connectors

Connectors represent work that is based on symbolic

types. They permit logical substitutions and

sequencing, and facilitate explanations of reasoning.

Connectors are a way to associate impressions, ideas

and actions with a given context and achieve a logical

sequence of behavior. Connectors are active objects

that sense and react to the environment. They activate

(extend) and deactivate (retract) based on the current

context. As the agent’s state and the state of the

environment changes, the connectors sense the changes

and extend or retract accordingly. By attaching

connectors to various elements within the system,

including tickets, the connectors signal the elements

state of readiness and level of fitness for the current

situation. With the connectors continually reacting to

the environment, behavioral and procedural knowledge

(tickets) can bind at runtime to fit the context as it

develops. This binding is based not only on the state of

the environment, but also on the goals of the agent and

its social interactions with other agents. In this way,

the correct procedural knowledge can be brought to

bear in the correct situation.

In MARIA connectors react to operations performed by

actors and infrastructure and have a potential for

affecting other actors and infrastructures.

A connector is defined by the tuple {label, state,

cardinality}.

4.5.1 Connector State – Extended or Retracted

Connectors have a Boolean state; extended or retracted.

A retracted connector is inactive, and cannot connect to

any other connector. An extended connector is

currently available for connecting. If a connection

occurs, and one of the connectors subsequently retracts,

the binding is broken, and the remaining extended

connector may bind to another extended connector. An

extended connector can be distinguished from a

retracted connector graphically by a small

perpendicular tick on the retraced connector.

Figure 4.4 Extended and retracted connectors

Connectors are extended and retracted by actors and

infrastructures to advertise services or request access to

services. When an infrastructure wishes to advertise

that it has a capability, it extends a socket connector.

When an actor requests a resource, he extends a plug

connector. If a socket accepts a plug, the two

connectors are said to bind.

Connectors can extend without the owner of the

connection being aware of this event. This ‘hidden’

connector can represent functionality on an

infrastructure for instance, that is not an advertised

capability. A buffer overflow vulnerability on a server

could be represented as a ‘hidden’ socket connector,

with special requirements to indicate knowledge of the

vulnerability, and skills required to exploit the

vulnerability.

4.5.2 Connector Ends – Sockets and Plugs

There are two types of connector ends: sockets and

plugs. Sockets represent processes that can be utilized

to access resources – a means to access information.

7

When an agent requires a service or resource, he

extends a plug connector and requests to bind to a

socket. If a socket exists that matches the plug then the

requesting agent binds to the resource or service.

Socket labels differ from plug labels. The tokens listed

on a socket (Tsocket) are the required tokens that must be

presented to bind to this socket. The tokens listed on a

plug (Tplug) are the tokens available to the owner of the

plug. A binding will not occur unless Tsocket ⊆ Tplug.

4.5.3 Connector Cardinality

Connectors have a cardinality that specifies the number

of connectors that can simultaneously be bound to this

particular connector. A connector without a cardinality

label has a cardinality of one. A connector with a

cardinality of zero represents a special type of

connector called a Listener Connector.

Figure 4.5 Socket Cardinality

Figure 4.6 Actor binding to an Infrastructure

Connectors are a powerful tool that binds the

components of the simulation together. Properties of

agents connect to tickets and goals to activate and

deactivate these activities. Agents extend and retract

connections to advertise and use services of other

agents.

Furthermore, connector links can be traversed to

explain agent reasoning. These connector-based

components facilitate rapid development of modular,

connector-based simulations.

4.6 MARIA

MARIA was developed as a proof of principle

implementation of these technologies, with the goal of

modeling the IA domain. The simulation developed

allows researchers to rapidly create scenarios, and

investigate the results of actor’s actions and inactions

as they pertain to an organizations information

security. The composite architecture, combined with

the connector-based simulation provides a modular

system for modeling a complex domain.

5. MOVES Agent Research: What’s

Ahead

The multi-generational MAS research and insight

gained over the past three years has manifested itself in

increasingly complex simulations that were

progressively easier to design and implement. This

progress has allowed the Computer-Generated

Autonomy Group to branch off into some very diverse

areas of research.

 5.1. Computer Generated Interactive Stories

These research projects represent exciting new

directions for the MOVES Institute. The domains

include interactive story generation and agent-based

simulation auto-narration.

The Department of Defense (DoD) uses modeling and

simulation for a variety of purposes, such as to conduct

joint training exercises, develop and evaluate new

doctrine and tactics, analyze alternative force

structures, and study the effectiveness of new weapons

systems. Advances in information technology have

lowered the cost of computer-based models and

simulation, making modeling and simulation a cost-

effective alternative to live training and exercises.

While these advances have gone a long way towards

creating technically accurate simulations they have not

addressed the issue of presenting realistic scenarios

while supporting user interaction.

The goal of interactive simulation, whether it is a

virtual story or a combat simulation, is to present the

user with an experience that suspends their disbelief in

the artificialities imposed by the system. In this way,

the user feels it is a “real” experience. From the DoD

8

perspective, this results in more realistic and effective

training, as well as more accurate assessments of the

systems, tactics or doctrine being evaluated.

The entertainment industry has long known that to

achieve this suspension of disbelief, it is not sufficient

to simply produce a technically accurate simulation. It

is the unfolding of events and presentation of the story,

along with rich believable characters that makes for a

truly effective and immersive experience. The

Computer-Generated Autonomy Group is exploring the

use of autonomous agent technology to guide the

behavior of the simulation characters, while

constructing a dynamic, interactive story line that is

free to unfold based on the actions of the user, the

internal states of the autonomous characters, the laws

of the simulation world and the global state of the

simulation environment.

A system capable of controlling the actions of

autonomous computer generated characters within the

guidelines of a story or simulation scenario must

support complicated worlds with multiple characters

and rich plot complications. At the same time, it must

be adaptable to multiple domains, whether it be

presenting training scenarios in a ground combat

simulation or immersing the user in an action-

adventure story.

Current approaches based on artificial intelligence

planning techniques can support complicated plots with

a diverse set of story characters, but they are extremely

domain-knowledge specific. Extensive time and effort

is required to generate new knowledge bases and

dependency networks for each new story. Algorithmic

approaches using tree or graph structures to store story

events provide a domain independent methodology, but

for complicated stories, the tractability of these

knowledge structures can be overcome by the

combinatorial problem of evaluating all possible plots

each time an event occurs [6]. The problem of creating

a general interactive story system is one of developing

an architecture that scales well and is domain

independent.

The Computer-Generated Autonomy Group has

developed an interactive, agent-based story system

based strongly on the use of tickets and connectors to

present highly interactive and dynamic stories. A

typical story consists of goal driven autonomous

characters, a narrative structure aligned closely with

the protagonist, and a collection of potential scenes,

along with media, dialog and character interactions to

populate the scenes. These story elements are

combined dynamically at runtime to generate a story

that adapts to the participants interaction and the state

of the participant’s character [7].

Figure 5.1 is a screenshot of a scene in which two

autonomous characters are conversing in front of a

building. The selection of the specific scene within the

context of the story is non-scripted. A stage manager

agent selects the scene to be played based on many

different criteria. Some of these include the

protagonist’s personality, what the protagonist has

experienced thus far in the story, and where the story is

with regards to its progression through its narrative

phases. Likewise, the interactions between the two

characters as the scene plays out, and the consequences

of those interactions, are non-scripted. The story is in

essence self-organizing, built from the bottom up from

a pool of story elements. By taking a bottom up

approach, the system is able to overcome the scaling

and complexity problems of traditional AI based

methods while supporting domain independent story

content.

Figure 5.1 Two autonomous characters conversing

5.2. Agent-Based Simulation Auto-Narration

One of the most exciting research projects currently

underway is an agent based simulation auto-narrator.

When watching MAS simulation demonstrations with

dots moving about a screen, a human narrator describes

what the dots are doing. But is this interpretation and

narration of the agent actions coming from the narrator

or from the model? Until the models narrate their own

behavior there is no way to know. Through the use of

self-documenting connectors, analysts will not only be

able to study behavior in terms of “what” happened,

but the models themselves will provide insight as to

“why” it happened.

9

6. Conclusion

Multi-agent systems (MAS) simulation and

autonomous behavior have tremendous potential for

application in defense and entertainment/defense

projects. The Computer Generated Autonomy Group

has made tremendous progress in bringing MAS

simulation techniques to Department of Defense (DoD)

models and simulations, and advancing the start-of-the-

art to make adaptive behavior far easier to create and

control. Research projects in helicopter reconnaissance

[8], land combat [9], cognitive modeling of land

navigation [10], modeling organizational changes in

military units [11], naval planning, [12], personnel

management [13], human behavior modeling [14], and

networked virtual environments [15] have provided

valuable insight into their respective problem domains

and been well received by their DoD sponsors.

But this work is just the beginning. In the not too

distant future, the methodology and tools for creating

MAS simulations will be as accessible as those

currently available for traditional discrete-event

simulations.

References

[1] Hiles, J., VanPutte, M., Osborn, B., Zyda, M.,

“Innovations in Computer Generated Autonomy at

the MOVES Institute”, Technical Report NPS-

MV-02-002, Naval Postgraduate School,

Monterey, California, 2001.

[2] U.S. Department of Defense Directive S-3600-1,

1996 cited in Joint Chiefs of Staff, “Information

Assurance: Legal, Regulatory, Policy, and

Organizational Considerations”, 3rd Edition, U.S.

Department of Defense. September 17, 1997.

[3] VanPutte, M., “A Computational Model and

Multi-Agent Simulation of Information

Assurance”, Dissertation, Naval Postgraduate

School, Monterey, CA, 2002.

[4] Roddy, K. and Dickson, M., “Modeling Human

And Organizational Behavior Using A Relation-

Centric Multi-Agent System Design Paradigm”,

Master’s thesis, Naval Postgraduate School,

Monterey, CA, 2000.

[5] Kang, M., Waisel, L.B., Wallace, W.A. “Team

Soar – A model for team decision Making”,

Simulating Organizations, AAAI Press, 1998.

[6] Weyhrauch, P., “Guiding Interactive Drama”.

Ph.D. thesis, Technical Report CMU-CS-97-109,

School of Computer Science, Carnegie Mellon

University, 1997.

[7] Osborn, B., “An Agent-Based Architecture for

Computer-Generated Interactive Stories”,

Dissertation, Naval Postgraduate School,

Monterey, CA, 2002.

[8] Unrath, C., “Dynamic Exploration of Helicopter

Reconnaissance Through Agent-based Modeling”,

Master’s thesis, Naval Postgraduate School,

Monterey, CA, 2000.

[9] Mert, E. and Jilson, E., “Modeling Conventional

Land Combat in a Multi-Agent System Using

Generalization of the Different Combat Entities

and Combat Operations”, Master’s thesis, Naval

Postgraduate School, Monterey, CA, 2001.

[10] Stine, J., Representing Tactical Land Navigation

Expertise, Master’s thesis, Naval Postgraduate

School, Monterey, CA, 2000.

[11] Pawloski, J., “Modeling Tactical Land Combat

Using a Multi-Agent System Design Paradigm (GI

Agent)”, Master’s thesis, Naval Postgraduate

School, Monterey, CA, 2001.

[12] Ercetin, A., “Operation-Level Naval Planning

Using Agent-Based Simulation”, Master’s thesis,

Naval Postgraduate School, Monterey, CA, 2001.

[13] French, S., “Analyzing Projected Personnel

Retention Utilizing Complex Adaptive Systems”,

Master’s thesis, Naval Postgraduate School,

Monterey, CA, 2001.

[14] Hennings, C., “Designing Realistic Human

Behavior into Multi-Agent Systems”, Master’s

thesis, Naval Postgraduate School, Monterey, CA,

2001.

[15] Washington, D., “Implementation of a Multi-

Agent Simulation for the NPSNET-V Virtual

Environment Research Project”, Master’s thesis,

Naval Postgraduate School, Monterey, CA, 2001.

Author Biographies

MAJOR MICHAEL VANPUTTE is a Ph.D.

candidate in the Computer Science Department, Naval

Postgraduate School and a member of the MOVES

10

Institute. His dissertation “A Computational Model

and Multi-Agent Simulation of Information Assurance”

involved the development of a mathematical and

descriptive model of Information Assurance, and a

multi-agent implementation of these models. Major

VanPutte is an active-duty combat engineer officer and

airborne ranger. He received his BS in Information

Systems from the Ohio State University and MS in

Computer Science from the University of Missouri-

Columbia. His current interests are multi-agent

systems, information assurance, and computer-

generated autonomous behavior.

COMMANDER BRIAN OSBORN is Ph.D.

candidate in the Computer Science Department of the

Naval Postgraduate School and a researcher in the

MOVES Institute. His concentrations include agent-

based modeling and simulation, computer generated

autonomous behavior and interactive narrative. He is

the principle implementer of the MOVES Story

Engine, developed with the guidance of Professor John

Hiles. His dissertation project “An Agent-Based

Architecture for Computer-Generated Interactive

Stories” explores the use of autonomous agent

technology to guide the behavior of the simulation

characters, while constructing a dynamic, interactive

story line based on the actions of the user, the internal

states of the autonomous characters and the laws of the

simulation environment. He is a principal investigator

in the MOVES Center for the Study of Potential

Outcomes where the MOVES Story Engine and agent-

based simulation techniques are being applied to the

problem of anticipating unexpected actions on the part

of systems and organizations such as terrorist groups.

CDR Osborn is an active duty Naval aviator. He holds

a BA in Applied Mathematics (U Maine, Orono) and a

MS in Operations Research from the Naval

Postgraduate School.

