
Red-Black Trees 
 
Binary Search Trees were the first data structure we looked at for implementing Ordered Maps 
and Dictionaries.  BSTs work well except: 

- the height of the tree is dependant on the data and could be as bad as O(n) if the data is 
in sorted order when it is added to the tree. 

 
2-4 Trees were an improvement over binary search trees for implementing Ordered Maps and 
Dictionaries because: 
 - we can guarantee the height of a 2-4 is O(log n) which means we can search, insert and 

delete in O(log n).   
The drawback to 2-4 trees was: 
 - we had to deal with multi-entry nodes. 
 
The next data structure we are going to look at is called a Red-Black Tree.  They will give us the 
performance of a 2-4 tree with the simplified structure of a binary search tree.  The cost of doing 
this will be in the complexity of the operations…not complexity in terms of running time, but 
complexity in terms of recognizing when the tree needs to be fixed and how to fix it. 
 
A Red-Black tree is a binary search tree where each node has a color attribute (red or black).  
This attribute will be used to help manage the height of the tree. 
 
Here’s a sample tree: 
 

 
 
 
Definition of a Red-Black Tree: 
A Red-Black Tree is a Binary Search Tree where each node has an additional attribute, color 
which is red or black, and the tree satisfies the following properties: 
 1. Root Property: the root is black 
 2. External Property: every leaf node is black (all leaves are place holders/dummy nodes) 
 3. Internal Property: children of a red node are black. (no red-red child-parent 

relationships) 
 4. Depth Property: all leaves have the same “black depth.”  Black depth is the number of 

ancestor nodes that are colored black. 
 



With these properties, we can keep the height = O(log n).  To be specific, height ≤ 2log(n+1). 
 
Throughout the discussion of red-black trees, we will fall back on a correspondence between red-
black trees and 2-4 trees.  It turns out that a red-black tree can be represented by 2-4 trees and 
vice versa.  Since we’ve already studied 2-4 tree operations, so we’ll use this correspondence to 
shed light on what’s going on with red-black tree operations. 
 
Red-Black Tree / 2-4 Tree Correspondence 
To go from a red-black tree to a 2-4 tree, merge red nodes into their parent.  To go from 2-4 to 
red-black, do the opposite. 

 
 
Let’s look at an example.  Given the following red- black… 
 

 
its corresponding 2-4 tree would be: 

 


















