
0018-9162/00/$10.00 © 2000 IEEE May 2000 1

C O V E R F E A T U R E

The Push to
Make Software
Engineering
Respectable

S
oftware engineering (SE) is maturing as a dis-
cipline and profession, but three decades after
the first NATO Conference on Software
Engineering, it is still not regarded as a legit-
imate, respectable engineering profession. In

1995, Gary Ford and Norman Gibbs of the Software
Engineering Institute evaluated what it means for a
profession to be mature and how SE was doing.1 Their
extensive and fascinating study found that, relative to
other fields and engineering branches, most elements
that make SE a profession were quite immature.

Five years later, SE has countless practitioners (a.k.a.
software developers), thousands of articles, dozens of
conferences and workshops, and a respectable number
of education and training programs. The computer sci-
ence (CS) and SE communities (educators, researchers,
practitioners, and professional societies) are further
along in defining a body of knowledge, code of ethics,
accreditation guidelines, and licensing programs.

But despite all this progress, SE, while recognizable, is
still immature—as evidenced by the significant gap
between vision, education, and standard practice. The
reasons are legion, but they boil down to one simple fact:
The field is still young. There just hasn’t been enough
time to gain widespread community consensus on issues,
to stabilize a core body of knowledge, and to develop a
large enough pool (several generations) of experienced
practitioners and educators. The rapid changes in this
field make the road to maturity even rougher.

Although we believe time will eventually mature SE,
a calculated push can accelerate the maturation process.
By “push,” we mean defining, accrediting, and evalu-
ating new curricula that stress CS and SE fundamentals

and practice, focus on lifelong learning and team expe-
rience, and increase the role of the professional societies
in accreditation, certification, and licensing efforts.
Although the push will not overcome all issues, it will
go far in addressing the most knotty ones.

Establishing SE programs is fraught with economic,
political, and pedagogic challenges—notably how to
divorce SE (or if it should be divorced) from existing
CS and computer engineering (CE) curricula. Any
solutions will have to come from deeper, more exten-
sive industrial-academic-professional society partner-
ships. This is key.

We have spent some time considering the reasons for
SE’s immaturity. All of us are heavily involved in both
industry and academia and have been active in profes-
sional societies that aim to promote SE as a profession.
Promotion efforts are by no means limited to the US,
but because our experience is primarily with US activ-
ities, that is our focus in this article. Our main goal is
to explore, from a multifaceted perspective, why we
are where we are now and how we can move forward.

WHAT MAKES A PROFESSION MATURE?
As Table 1 shows, a mature profession must have

several key infrastructure components. In addition to
solid education programs, proper guidance from
industry and professional societies is critical to ade-
quately prepare graduates for entrance to an SE pro-
fession. Accreditation of programs and possible
certification and licensing of graduates safeguard the
quality of any education and training program and
provide assurance that graduates meet and maintain
requisite levels of knowledge and practice.

A recognized engineering profession must have an established body of
knowledge and skill that its practitioners understand and use consistently.
After 30 years, there is still a wide gap between the best and the typical
software engineering practices. To close this gap, we need a deeper
partnership among industry, academia, and professional societies.

Gilda Pour
San Jose State
University

Martin L.
Griss
Hewlett-Packard
Laboratories

Michael Lutz
Rochester
Institute of
Technology

2 Computer

The various infrastructure components work
together to ensure that those entering the profession
become familiar with the currently accepted body of
knowledge and that they practice it in a manner con-
sistent with the tenets of the profession. Research and
practice will evolve the body of knowledge; thus, prac-
titioners must continue to enhance their skills and
practice as they gain enough experience to specialize.
Table 1 indicates the relative maturity of each infra-
structure component, using Ford and Gibbs’ four-level
scale.1 However, the ratings do not reflect the con-
sensus or breadth of compliance on a particular com-
ponent, which tends to be low.

A major symptom of a not-quite-mature field—and
a frustrating one to address—is the wide gap between
education and practice and between best and typical
practice. Ongoing efforts in many maturity elements
are attempting to narrow these gaps.

PROFESSIONAL SOCIETIES
There are many engineering and CS professional soci-

eties, but the two most clearly identified with the SE pro-
fession are the Association for Computing Machinery
(ACM) and the IEEE Computer Society (IEEE CS).
Recently, the two joined forces to define SE as a profes-
sion, provide a code of conduct for professionals, and
formulate appropriate criteria for accrediting SE edu-

cational programs. The Software Engineering Coor-
dinating Committee (SWECC) defines the scope of these
constituent tasks and monitors and coordinates the
working groups. SWECC membership is divided evenly
between the ACM and the IEEE CS—a balance that is
the hallmark of SWECC-commissioned activities. Table
2 lists some of SWECC’s current projects.

Although the ACM and the IEEE CS sponsor
SWECC projects, international participation has been
uncommonly strong. More important, professional
groups in other countries are beginning to take SE seri-
ously: Graduates of UK computing programs that are
accredited by the British Computer Society are eligible
for Chartered Engineer status, and licensing for grad-
uates of accredited SE programs in Australia is simi-
lar to licensing for other engineering graduates.
Canada also seems to be leaning toward similar treat-
ment of SE as a profession.

Barriers. Activities to develop a body of knowledge,
accreditation, curricula, a code of ethics, and licensing
and certification are ongoing but are proceeding rather
slowly, staffed primarily by volunteers. Although the
IEEE CS and the ACM have actively promoted pro-
fessionalism in SE since 1993, they do not agree on all
issues related to SE as a profession. Their positions on
licensing professionals and the pace of accreditation
are far apart, for example.

Table 1. How does software engineering rate on the maturity scale?

Infrastructure component of a mature profession How software engineering measures up*

Recognized body of knowledge IEEE-CS/ACM task force has released a first body of knowledge report with
consensus expected to take at least 4 years (level 2-3)

Professional society/societies IEEE-CS, ACM, and SIGSOFT, active, a specific SE society under discussion (level 2-3)
Code of ethics Recently developed for SE, but not widely known or practiced (level 1-2)
Initial professional education system Some SE BS degrees recently offered by CS departments and special SE depart-

ments in the US, the UK, Europe, Canada, and Australia (level 1-2)
Accreditation of professional education programs to improve Accreditation Board for Engineering and Technology (ABET) criteria for SE are in
program quality and ensure some uniformity place, which the Computer Science Accreditation Board (CSAB) will evolve

(level 1-2)
Skills development mechanism for professionals Several MSE programs, certificate short courses, and so on (level 1)
entering the practice

Professional development programs to maintain currency of Fragmented offerings—extension courses, seminars, professional conferences,
knowledge and skills manufacturer certification programs (level 1)

Certification of professionals administered by the profession Limited, inconsistent, technology-based; some certificates issued by manufacturers
(for example, Microsoft MCSE) (level 0-1)

Licensing of professionals administered by government Recently in the US (Texas), Canada, and the UK (level 1-2)
authorities

*Level 0 = Nonexistent.
Level 1 = Ad hoc, some form of element exists, but is not identified with the SE profession.
Level 2 = Specific, the element exists and is clearly identified with the SE profession.
Level 3 = Maturing, the element has existed for many years, is continually improving, and is under active stewardship of an appropriate professional
body.

May 2000 3

At the national level, the President’s Information
Technology Advisory Council (PITAC) report articu-
lated the urgency of SE issues, and Congress approved
money for the National Science Foundation (NSF),
but these recommendations are not coordinated with
the societies, nor do final proposals really target funds
toward SE issues. Thus, progress is limited to the rate
at which society members and leadership can change.

Possible solutions. The societies, via member involve-
ment, must strive to create a broader consensus on the
core of the SE profession. Perhaps the SE community
needs to address issues more aggressively. We could accel-
erate progress with full-time paid staff, for example,
rather than relying on the efforts of part-time volunteers.

Body of knowledge
In long-established professions, such as medicine,

law, or civil engineering, the body of knowledge was
codified as part of a long maturation process. To accel-
erate the maturation of new professions, professional
communities can consciously and explicitly define the
body of knowledge, rather than waiting for a natural
evolution. The codification proclaims what is unique
about the profession, demarcates the boundaries with
related professions, and significantly aids education,
certification, and licensing. Getting practitioners and
educators to agree on the core body of knowledge is
a key milestone in any discipline.

SWECC established the Software Engineering Body
of Knowledge (SWEBOK) project to collect and doc-
ument the state of SE practice, using a three-phase
consensus-building approach.2 So far, the SWEBOK
project has identified and is structuring many topics
that texts and SE programs cover. Area committees
are expanding and distilling the material, using pub-
lic reviews and surveys to reach consensus. The goal
is to categorize the material as core, advanced, or
research to determine what should be taught and
known at various professional development levels.

It will take at least four years to reach initial con-
sensus, with ongoing refinement and evolution. The
first two phases—strawman and stoneman—are
essentially complete, providing a basis for significant
work on model curricula and certification.

Barriers. Achieving consensus on the common core
takes time, as will agreeing on related specialties. More
time will elapse before curricula incorporate this core,
especially when state education processes are involved.

Possible solutions. Some ongoing activities are
increasing awareness and buy-in. Adding workshops
and panels at major conferences could heighten
awareness even more. Support for innovative pro-
grams can accelerate the rate of change. Also, signif-
icant industry, government, and society sponsorship
and funding can help create sponsored and widely
advertised pilot or magnet programs to help jump-
start change, as well as offer fast-track certification
programs. Neither academia nor industry will change
overnight, however. Current mind-sets must change,
which may require new blood in upper ranks.

Code of ethics and professional practice
SWECC established the Software Engineering

Code of Ethics and Professional Practice (SWCEPP)
project to develop a code that the SE community as
a whole would find acceptable. An international
effort produced a detailed add-on to the standard
engineering code of ethics, which differs across coun-
tries.3 Some decry the extra detail as unnecessary,
claiming that we already have an adequate engineer-
ing code. We agree with others who believe the extra
detail and clarity are needed, both to enhance educa-
tion and to clarify to SE educators and practitioners
that they are indeed engaged in an engineering effort
that affects society.

The ACM and the IEEE CS recently approved the
draft code, with the goal of having it recognized as
appropriate for all involved in SE. There are as yet no

Table 2. Software engineering projects jointly sponsored by the ACM and the IEEE CS through the Software Engineering Coordinating
Committee.

SWECC project* Description and status as of April 2000

Software Engineering Body of Create an index to the core body of knowledge (BOK), structure it, refine with specialist area committees, and
Knowledge (SWEBOK) gain community consensus. — Phase two BOK draft (Stoneman) essentially complete.

Software Engineering Code of Create an expanded and detailed code of SE ethics for educators and practitioners based on a shorter engineering
Ethics and Professional code of ethics. Provide case studies and training materials to help rapidly educate community. — Final draft
Practice (SWCEPP) submitted for approval.

Software Engineering Education Define model accreditation criteria and sample curricula consistent with SWEBOK for BS and other SE education
Project (SWEEP) programs. — SWECC approved accreditation guidelines in December 1998.

* More details and current status of key activities are described in the IEEE Software special issue on professional software engineering (Nov./Dec.
1999) and at http://www.computer.org/tab/swecc.

4 Computer

formal consequences for professionals who violate the
code. In other professions, a licensing board hears
accusations and can recommend disbarment (as in the
legal profession) or some other sanction. The code
could also be used in legal proceedings to determine
whether or not a software engineer has acted in accor-
dance with professional norms and the accepted body
of knowledge.

Barriers. Awareness is the biggest problem. Many
of those involved in SE still have not heard of the draft
code or SWCEPP and are confused about how it
affects them. Only a handful of schools yet teach SE
ethics and professional practice.

Possible solutions. We need to have more articles and
studies at key conferences, active industrial lobbying,
wider-spread accreditation. Most of all, we need to
allow time for awareness and practice to grow. We
can then begin self-monitoring.

Education and accreditation
Many fledgling undergraduate SE programs exist

in the US and abroad,2,4 and we expect to see more in
the next few years. The sidebar “Elements of a Good
Software Engineering Program” describes what con-
stitutes an effective program. Common to all pro-
grams is the recognition that SE is fundamentally
different from CS and CE. The sidebar “The Case for
Software Engineering Independence” describes some
of these differences.

The Software Engineering Education Project
(SWEEP)4 provides a detailed set of guidelines for SE
programs that will eventually seek accreditation.
SWECC officially adopted the SWEEP accreditation
guidelines in December 1998. Also in 1998, the
Computer Science Accreditation Board started a formal
integration of its operations and criteria with the
Accreditation Board for Engineering and Technology—

A comprehensive un-
dergraduate SE pro-
gram builds on a

traditional CS program, incorporating
various components adapted from typical
engineering education programs. It has
eight main elements:

• CS fundamentals provide the core
technical knowledge and skills about
software and hardware artifacts and
techniques to address key technical
problems. These include programming
languages, modeling, formalisms,
mechanisms, databases, operating sys-
tems, networking, algorithms, pro-
gramming, and distributed systems.

• SE fundamentals provide the core
technical knowledge and process skills
and tools to create, manage, and main-
tain software and documentation and
deal with complexity and human
error. These include software process
discipline, life-cycle models, software
metrics and economics, architecture,
design methods and skills, design
inspections, testing, configuration
management, and standards.

• Engineering practice and ethics pro-
vide an understanding of general sys-
tems principles, economic and
functional trade-offs, the implication

of building artifacts for use, and how
engineers serve society and balance
their responsibilities to their employ-
ers, their customers, and society.

• Effective communication and team-
work skills provide knowledge and
skills in working with diverse human
beings—from peers to management
and customers.

• Experience in an application domain
that exposes students to real-world
problems. This element is key to
grounding and consolidating core
knowledge and skills in a particular
area.

• A significant team project exposes stu-
dents to issues such as requirements
change, project management, config-
uration management, use of tools,
and team dynamics. The project is
typically run under somewhat con-
trolled conditions in a laboratory or
studio setting and can be completed
in assigned time, with mentors ori-
ented to the educational experience.

• Experience in some industrial setting,
perhaps through a required internship
or co-op program, provides even more
exposure to real-world issues, people,
pragmatics, and the vagaries of real
projects under real-time pressure.

• Tools for effective lifetime learning,

including experiences that rehearse
how to seek, evaluate, and use infor-
mation not directly provided by
assigned texts and lectures. For
example, projects might require stu-
dents to find information on the Web
or in the library, evaluate and inte-
grate possibly conflicting materials,
and attend and report on a confer-
ence and a tutorial. Students might
also participate in an ongoing “jour-
nal club” or “research seminar,”
where they would read, analyze, and
compare many papers.

Because software technologies crop up
quickly and because IT’s role is constantly
changing, any SE program must empha-
size lifelong learning. Numerous phe-
nomena and issues (open source, the Web,
component- and service-oriented com-
puting) will affect SE, and SE profession-
als must be able to understand and
evaluate those effects.

Also, different parts of software con-
struction require a different mix of skills:
For some segments, a laboratory-style
team project is important (do an experi-
ment, measure it, evaluate it); in others a
studio approach is better (do creative
work in some medium under the watch-
ful eye of a mentor or instructor).

Elements of a Good Software Engineering Program

May 2000 5

a merger that will unify the criteria and process used to
accredit SE programs. SWEEP will use the accreditation
guidelines as a specification to design one or more model
curricula for SE, leveraging the initial work of SWEBOK
and the Computer Curriculum 2001 task force (recently
formed by the IEEE CS and the ACM to review and
upgrade the 1991 computing curricula), among others.

In other countries, the development of undergradu-
ate SE programs is even further along. Australia and
the UK, for example, established initial programs in the
early 1990s. As a result, both countries have accredi-
tation criteria for SE programs, and graduates have
equal professional standing with those in more tradi-
tional engineering disciplines. India’s software indus-

try is also growing rapidly, in large part because of the
disciplined engineering approaches used in Indian firms.

Barriers. Establishing SE in undergraduate (or even
graduate) curricula is rarely straightforward. Several
educational institutions, including the Rochester
Institute of Technology (RIT), have successfully estab-
lished an undergraduate SE program, but one model
is unlikely to work for all institutions. The California
state university system, for example, must ensure that
appropriate two-year programs are in place in paral-
lel with introducing the four-year degree.5

A critical problem is finding faculty interested in
and capable of teaching SE because few CS faculty
have enough real-world SE experience. Teaching SE

Many institutions tend
to think of software
engineering (SE) as just

a kind of computer science (CS) or com-
puter engineering (CE). This leads to
problems because the disciplines differ in
both focus and approach: SE studies soft-
ware; CS and CE study primarily hard-
ware, algorithms, and languages. CS and
CE develop knowledge; SE applies that
knowledge to engineer high-quality soft-
ware systems. The IEEE Standard 610.12
definition of software engineering states:

“(1) The application of a systematic,
disciplined, quantifiable approach to
the development, operation, and main-
tenance of software; that is, the appli-
cation of engineering to software, and
(2) The study of approaches as in (1).”

focuses on acquiring and applying tech-
nical standards, but does not address eth-
ical standards.

Learning and building
The ACM/IEEE CS Task Force on the

Core of CS for Computing defines the com-
puting discipline as “the systematic study
of algorithmic processes that describe and
transform information: their theory, analy-
sis, design, efficiency, implementation, and
application.” Thus, the scientific question
underlying all of computing is “What can
be (efficiently) automated?”1

Software engineers and computer sci-

entists have fundamentally different goals.
As David Parnas says, “Scientists learn sci-
ence plus the scientific methods needed to
extend it,” and “Engineers learn science
plus the methods needed to apply it.”2

Debates about the relationship between
SE and CS date back to the late 1970s,
when Anthony Wasserman and Peter
Freeman3 identified five key areas that
provide the foundation for SE: computer
science, management, communication
skills, problem solving, and design
methodology. Mary Shaw,4 Bill Wulf,5

and Parnas2 highlight the intimate con-
nections between (software) science and
engineering, and discuss the costs and
benefits of separating computing into dis-
tinct science and engineering disciplines.
Despite the political and emotional rea-
sons to claim that SE should be just a part
of CS and CE, the strong differences in the
goals and style of education—and the
need for professional software engi-
neers—motivate distinct SE programs.

Art and science
There is some controversy about the

kind of engineering discipline SE actually
is and how it differs from CS. Distinct fac-
tions in the software community believe
that creating software is primarily an
artistic endeavor; others consider it more
mathematical, while others believe that
process and method are key. But both art
and science are at the core of engineering,
as attested to by this quote from Henry

Petroski, a noted civil and environmental
engineer and author of the acclaimed “To
Engineer is Human”:6

The conception of a new structure can
involve as much a leap of the imagina-
tion and as much synthesis of experience
and knowledge as any artist is required
to bring to his/her canvas or paper. Once
the design is completed, it must be ana-
lyzed by the engineer as scientist in as
rigorous an application of the scientific
method as any scientist must make.

References
1. P.J. Denning et al., “Computing as a Dis-

cipline,” Comm. ACM, Vol. 32, No. ??
(or month), 1989, pp. XX-XX.

2. D.L. Parnas, “Software Engineering Pro-
grams Are Not Computer Science Pro-
grams,” IEEE Software, Nov./Dec. 1999,
pp. 19-30.

3. A. Wasserman and P. Freeman, “Software
Engineering Concepts and Computer Sci-
ence, Curricula,” Computer, June 1997,
p. 91.

4. M. Shaw, “Prospects for an Engineering
Discipline of Software,” IEEE Software,
Nov. 1990, pp. 15-24.

5. W.A. Wulf, “Are We Scientists or Engi-
neers?” ACM Comp. Surveys, Mar. 1995,
pp. 55-57.

6. H. Petroski, To Engineer Is Human: The
Role of Failure in Successful Design, Vin-
tage Books, N.Y., 1992, p. 40.

The Case for Software Engineering Independence

6 Computer

requires competence in SE life-cycle processes
and so on—things that do not “feel like” CS.
Compounding the problem is the tradition of
basing faculty hiring on the applicants’ research.
Typical systems- or theory-oriented colleagues
see SE research and practice as fuzzy, decrying
the lack of evidence that SE principles and tech-
niques actually work. SE research that could
validate efficacy, such as metrics, management,
teams, processes, or methods typically involve
social-science-like experiments, which bothers
many traditional CS researchers. As a result,
new or prospective SE faculty often face skep-
tical or even hostile colleagues.

Another sensitive issue is the independence of the
SE program from CS, CE, or any other department.6

Many institutions resist SE independence, remember-
ing the battle over the EE-CS split. The concern is that
SE is an attractive combination of engineering and CS,
and that traditional programs will lose resources and
students as a consequence.

Possible solutions. Sometimes a partnership with CE,
industrial engineering, management, or business can
provide the ideal SE instructional team. An interdis-
ciplinary program that incorporates the strengths of
both CS and CE can result in a more stable and har-
monious environment for both students and faculty.7

Industry and NSF advocacy and funding of SE pro-
grams, projects, or chairs can help increase interest
and respect. If industry demanded a more standard,
comprehensive, and accredited SE education program
(as it does for other engineering professions) and was
willing to invest in developing such a program (not
just an SE training program to address a programmer
shortage), more institutions would comply.

In several regions, local industry does work closely
with local educational institutions to help motivate and
drive change, but for the most part, industry support
and encouragement is still lacking. In all US cases of suc-
cessful industry support, the program resulted from a
small, motivated contingent of faculty who established
credibility with the upper administration. Examples are
RIT’s co-op program,7 the University of Utah, Georgia
Tech, and the University of California at Santa Cruz.

A challenge to proponents of these programs, as well
as to researchers, will be to prove that students of these
programs produce better systems more economically,
relative to untrained students. Anecdotal evidence from
the RIT co-op program is encouraging, but it is only a
small step in the right direction. True validation of this
hypothesis will require cooperative work between
academia and industry to gather and analyze data.

Skills development
SE has many facets, and different training will be

required for different software roles and specialties,

including, but not limited to, architect, system engi-
neer, design engineer, test engineer, quality engineer,
maintenance engineer, programmer, and technician.
Different problem domains will surely require differ-
ent specialist skills; consider the difference in content
and scale between architecting and developing the user
interface (UI) subsystem for a large-scale, multiuser
computer game versus a UI system for a reactor or air-
plane controller. Even more different are the skills
needed for UI design versus those for database or oper-
ating system development.8 Programmers must know
specific languages and associated tools, and be famil-
iar with the skills needed to apply coding guidelines
and standards. A senior software engineer must have
both broad technical knowledge of CS and SE princi-
ples and be able to apply technical and managerial
practices that cover everything from project feasibil-
ity to product delivery and ongoing support.

Just as chemical and electrical engineering are
treated as distinct fields within “physical engineering,”
so we could distinguish, educate, and certify well-
understood, distinct specialties in SE, such as compil-
ers, databases, and operating systems.8

Barriers. SE covers a vast range of subdisciplines,
and some senior members of the field propose that
“SE for _____” is how we should move forward.
However, there is yet no consensus on the core areas,
nor on which parts of the core apply to which sub-
disciplines. Some core guidelines, such as design and
code inspections, are probably good for all parts of
SE, but some faculty are adamant that good practices
like code inspections do not belong in CS. This makes
it hard to find a place for these practices if the insti-
tution does not endorse a separate degree for SE.

Possible solutions. SWEBOK and SWEEP will help
distinguish core, advanced, and special areas and
define which curricula contain which parts. This incre-
mental strategy will help support an initial consensus
and then broaden that consensus as the experience
base widens. We must agree on the body of knowl-
edge and drive model curricula that incorporate core
elements and meet accreditation guidelines. We need
more effort than current part-time volunteers can pro-
vide to make this happen. Greater industry involve-
ment will garner interest, help shape programs, and
provide skilled practitioners, along with opportuni-
ties to study real-world problems. Fortunately, the
SWEBOK project has significant industrial sponsor-
ship.

Lifelong, self-directed education is also important. In
a world of free agents and contractors, software engi-
neers must pick up—on their own—many of their spe-
cialty skills. Commercial certification (MCSE and
Cisco CCIE or CCNA, for example) is valuable, and
classes from university extension or private institutions
are key to keeping skills current and marketable.9

A challenge to
proponents of
accredited SE

education programs
is proving that their
graduates produce

better systems more
economically.

May 2000 7

Licensing and certification
Licensing and certification is a significant (but not

essential) aspect of an engineer’s professional stature.
Society increasingly depends on software for a wide
variety of mission- and life-critical systems. Concerns
are escalating about liability and contracts that call for
a certified level of expertise in the software profes-
sional. The furor over Y2K has certainly raised aware-
ness of the potential impact of SE design decisions.

The degree of licensing in practice varies from pro-
fession to profession. Licensing seems to pertain mostly
to those who must sign off on a contracted deliverable
or who do bonded private consulting. Most engineers
who work for companies are not legally required to be
licensed, though many civil and electrical engineers will
do so to help advance their careers.

Accreditation, licensing, and certification mecha-
nisms together aim to protect the public’s health,
safety, and welfare by providing some assurance that
a practitioner is competent in the certified or licensed
specialty. Licensing also protects members of the pro-
fession, both by limiting the number of professionals
so licensed and by establishing norms that protect
individuals and groups in some liability suits. The leg-
islative bodies of all 50 states and the US territories
have created statutes that require an engineer per-
forming work for the general public to be licensed by
the state or territory in which the work is being per-
formed. The laws require licensing applicants to meet
certain standards of education and work experience
and to pass a series of examinations.

Barriers. The SE community has mixed opinions
about whether professional licensing at this time is a
good idea.10,11 Does it make sense to license software
engineers before making an SE body of knowledge
available? The ACM recommended against licensing
on the basis of advice from a blue-ribbon ACM com-
mittee. This is largely a political issue—people are
afraid of being controlled, of limiting access to a scarce
labor pool, and of legislating best practices.

Many feel that licensing is premature given the
SWEBOK’s current state and the absence of corre-
sponding accredited education programs. They doubt
what SE practice can actually guarantee. Their con-
cern is that best current SE practices do not result in
systems with the same reliability and safety that other
engineering disciplines produce.

Possible solutions. The Texas State Board of Engineering
Licensing uses an equivalency process to award a profes-
sional SE license without examination.12 Following its law
and tradition, Texas requires licensing only for engineers
whose services are publicly available. Still, the ramifica-
tions of any licensing have led to serious debates within
the computing community, which will take time to resolve.
Many believe that other states eventually will follow
Texas. But regardless of the outcome, society and lawsuits

will dictate that we proceed incrementally, starting
in safety-critical industries. Many believe that start-
ing licensing now will at least improve the state of
the practice and reduce error. Licensing efforts are
also under way outside the US, including in the UK
and Canada (British Columbia and Ontario).

A SUSTAINED PARTNERSHIP
A common theme in solutions to SE maturity

barriers is to involve industry more in SE teach-
ing and research. To do so, we need proactivity
on both sides. A deep, sustained partnership will
encourage the development of more effective SE edu-
cation programs and ensure that university research
will have more access to and influence on industrial-
scale development. We get the best of both worlds:
industrial involvement and advice and academia’s
long-term view of what makes a quality education.
This emphasis on the long-term view is what differ-
entiates the partnership in education from a training
exercise.

The partnership should focus on helping universities
arrive at the appropriate balance between fundamen-
tal knowledge and its engineering application. Because
many large companies have had to mount significant
SE training programs—in large part because of the
dearth of SE education in college, they should be more
than willing to assist in nurturing SE programs that
emphasize developing core skills. Increased collabora-
tion has many immediate benefits, such as reduced train-
ing costs for companies and more focused SE research
for institutions. Increased collaboration between acad-
emia, engineering institutes, and industry would sub-
stantially reduce serious mismatches in expectations.

Indeed, effective industry involvement is not trivial.
Goals and investments must match—typically, acade-
mia wants to train in fundamentals and lifelong learn-
ing, while industry focuses on acquiring skills to fill an
immediate need.

The sidebar “Building a Strong Industrial-Academic
Partnership Now” lists some steps each side can take
right away to begin forging this partnership.

S oftware engineering is an emerging profession
that will greatly mature within the next decade.
The SE community must define, accredit, and

evaluate new curricula, stressing lifelong learning, sig-
nificant team experience, and practical theory and fun-
damentals. We must also address the lack of con-
sistency among the undergraduate SE programs that
do exist. Educators do not yet agree on the core ele-
ments to teach; without systematic accreditation and
licensing, there is less pressure to quickly adapt pro-
grams to increase consistency and incorporate new
knowledge and skills. Academia is slow to incorporate
practices that work well (for example, inspections).

Involving industry
more in SE teaching

and research
requires proactivity

on both sides.

8 Computer

Too often, it disdains considering the gap between best
and current practices—a significant education and
research issue. Industry, on the other hand, is far too
slow to adopt practices validated by research and expe-
rience or to invest in reducing the practices gap.

Society and industry have tolerated the consequent
poor quality and practice because of the shortage of
trained practitioners and the dearth of experienced man-
agers who can recognize and sell good practice. The lack
of a mature infrastructure and the influence of societal
and business pressure make the widespread recognition
and adoption of best practice slow and sporadic.
Unfortunately, even if initial professional education more
quickly tracked the emerging body of knowledge, many
areas deemed critical would still be excluded. Internet-
based e-commerce technology, for example, is moving
so rapidly that only a handful of institutions have tried
to offer it—even industry has a hard time keeping up.

Industrial-academic partnerships in education and
research will enable practitioners to learn and hone a
broader range of skills and practices. The efforts we
have described will significantly drive the maturation
of SE as a profession, but we will need to sustain and
build on them to bring SE closer to its ultimate goal
of respectability. ❖

Acknowledgments
We greatly appreciate the excellent suggestions by

colleagues who reviewed an earlier draft of this arti-

cle: Patricia Collins, Paula Hawthorn, Robert Kessler,
Joe Podolsky, and Anthony Wasserman.

References
1. G. Ford and N.E. Gibbs, “A Mature Profession of Soft-

ware Engineering,” Tech. Report CMU/SEI-96-TR-004,
Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh,
1996.

2. P. Bourque et al., “The Guide to the Software Engineer-
ing Body of Knowledge,” IEEE Software, Nov./Dec.
1999, pp. 35-44.

3. D. Gotterbarn, “How the New Software Engineering
Code of Ethics Affects You,” IEEE Software, Nov./Dec.
1999, pp. 58-64.

4. G.L. Engel, “Program Criteria for Software Engineering
Accreditation Programs,” IEEE Software, Nov./Dec.
1999, pp. 31-34.

5. G. Pour and A. Hambaba, “An Undergraduate Software
and Information Engineering Curriculum under Devel-
opment at San Jose State University,” Proc. Frontiers in
Education (FIE) Conf., IEEE CS Press, Los Alamitos,
Calif., 1999, pp. XX-XX.

6. D.L. Parnas, “Software Engineering Programs Are Not
Computer Science Programs,” IEEE Software,
Nov./Dec. 1999, pp. 19-30.

7. M.J. Lutz and J.F. Naveda, “Crafting a Baccalaureate
Program in Software Engineering,” Proc. 28th SIGCSE
Tech. Symp. Computer Science Education, ACM Press,
New York, 1997, pp. XX-XX?

Companies and acad-
emic institutions can
take several immedi-

ate steps to align their expectations for the
software engineering profession.

If you are in industry:

• Develop relationships with selected
universities and SE faculty.

• Provide support for development of
educational programs rather than just
training programs. This means prepar-
ing students for an SE career, not just
a job. You could offer guest lectures
and mentoring, for example, or par-
ticipate on an SE advisory board.

• Provide input to the schools on how
their graduates fare in industry.

• Create more exciting and education-
ally aligned internship programs.

• Provide financial support. This is im-
portant, not only because of its direct
value, but also because it is a measure
of respect. Even if you can’t fund a
big project, you can fund a small col-
laborative research project and invite
the faculty and students to work with

you. Be sure to provide access to real
data and project records. Sanitize the
data and records to remove confi-
dential information as needed or
work under nondisclosure agree-
ments. Work closely with academic
colleagues to help them produce val-
ued publications that respect your
company’s need for confidentiality.

• Help clarify and articulate your com-
pany’s position on longer-term pro-
fessional training versus short-term
skills acquisition and how this affects
your relationship with educational
institutions.

If you are in academia:

• Convince your colleagues of the effi-
cacy of good SE practice. Show them
that a project with good design,
construction, quality assurance, and
so on is better than a thrown-together
project.

• Explain the implications and opportu-
nities of accreditation and licensing and
what effect they could have on expecta-

tions for a CS/SE degree. Teach an ethics
module. Include information about the
Software Engineering Coordination
Committee (SWECC) and its projects.

• Integrate some SE into any software
course you teach, and help your col-
leagues, especially those building
large systems, inject some SE princi-
ples into their projects. Be sure to
note any successes, however small.

• Have your SE project classes help the
software efforts of non-SE colleagues.

• Include industrial SE practitioners as an
advisory board and as guest lecturers.

• Advocate required industrial intern-
ships for students. Monitor the
results and benefits.

• Take minisabbaticals in industry, even
if the hosting corporation isn’t fund-
ing it. Invite industry experts in for a
sabbatical, a mini-sabbatical, or to be
a “software artist-in-residence” to
inspire and mentor students and staff.

• Develop and offer collaborative edu-
cational programs with colleagues in
computer engineering, business man-
agement, or industrial engineering.

Building a Strong Industrial-Academic Partnership Now

8. M. Jackson, “Will There Ever Be Software Engineering,”
IEEE Software, Jan./Feb. 1998, pp. 36-39.

9. A. Wasserman, “Software Processes and Software Pro-
fessionals in the 21st Century,” Cutter IT J., Sept. 1999,
pp. 17-23.

10. M.L. Griss, “Letter from the SIGSOFT Executive Com-
mittee,” ACM SIGSOFT, Software Eng. Notes, Sept.
1998, pp. 1-2.

11. J.R. Speed, “What Do You Mean I Can’t Call Myself a
Software Engineer?” IEEE Software, Nov./Dec. 1999,
pp. 45-50.

12. D.J. Bagert, “Texas Board Votes to License Software
Engineers,” ACM SIGSOFT Software Eng. Notes, Sept.
1998, p. 7.

Gilda Pour is a professor of software and informa-
tion engineering at San Jose State University, where
she helped develop a software and information engi-
neering curriculum. She develops and teaches courses
in object-oriented and component-based software
engineering and distributed object computing in both
industry and academia. Her industrial and research
experience is in object-oriented component-based
enterprise software engineering, with special empha-
sis on automated generation of Web-based enterprise
applications. Pour received a PhD in computer sci-
ence/software engineering from the University of
Massachusetts. Contact her at gpour@email.sjsu.edu.

Martin L. Griss is principal laboratory scientist for soft-
ware engineering at Hewlett-Packard Laboratories,
where he has researched software engineering processes
and systems, systematic software reuse, object-oriented
development, and component-based software engi-
neering. He created and led the first HP corporate reuse
program and participated in the development and exe-
cution of the HP corporate software initiative. Griss
received a PhD in physics from the University of Illi-
nois. He is an adjunct professor at the University of Utah
and a member of the ACM SIGSOFT Executive Com-
mittee and SWEEP. Contact him at griss@hpl.hp.com.

Michael Lutz is Motorola professor of software engi-
neering at the Rochester Institute of Technology,
where he heads RIT’s undergraduate software engi-
neering program. His interests in software architec-
ture, software design, and lightweight formal methods
led to development of core software engineering
courses in these areas. Lutz earned an MS in computer
science from the State University of New York at Buf-
falo. He is a member of the editorial board of Com-
puter and of the IEEE CS Educational Activities
Board. Contact him at mjlics@rit.edu.

May 2000 9

