
Cautious Inference in Collective Classification

Luke K. McDowell1, Kalyan Moy Gupta2, and David W. Aha3

1Dept. of Computer Science; U.S. Naval Academy; Annapolis, MD 21402
2Knexus Research Corp.; Springfield, VA 22153

3Navy Center for Applied Research in Artificial Intelligence;
Naval Research Laboratory (Code 5514); Washington, DC 20375

lmcdowel@usna.edu, kalyan.gupta@knexusresearch.com, david.aha@nrl.navy.mil

Abstract
Collective classification can significantly improve accuracy
by exploiting relationships among instances. Although
several collective inference procedures have been reported,
they have not been thoroughly evaluated for their
commonalities and differences. We introduce novel
generalizations of three existing algorithms that allow such
algorithmic and empirical comparisons. Our generalizations
permit us to examine how cautiously or aggressively each
algorithm exploits intermediate relational data, which can be
noisy. We conjecture that cautious approaches that identify
and preferentially exploit the more reliable intermediate
data should outperform aggressive approaches. We explain
why caution is useful and introduce three parameters to
control the degree of caution. An empirical evaluation of
collective classification algorithms, using two base
classifiers on three data sets, supports our conjecture.

Introduction
Classification is the task of assigning one or more class
labels to an unlabeled instance. Many supervised learning
algorithms induce classifiers (e.g., that induce Bayesian
networks, decision trees, neural networks, rules).
 An underlying assumption of traditional learning
methods is that the instances are independent of each other.
However, instances in many classification tasks are often
implicitly or explicitly related, such as when assigning
topics to web pages. Hyperlinked web pages are more
likely to share common class labels than non-linked pages,
and this factor should be considered when classifying
them. Such auto-correlation (correlation of class labels
among interrelated instances) has been observed in a wide
variety of data (Jensen and Neville 2002), including
situations where the relationships are implicit. For
example, email messages between two people are likely to
share topics.
 Collective classification is a methodology that
simultaneously classifies related instances. It can increase
classification accuracies over non-collective methods when
instances are interrelated (Neville and Jensen 2000; Taskar,
Abbeel, and Koller 2002; Lu and Getoor 2003). A number

Copyright © 2007 Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of algorithms have been used for such collective inference,
including relaxation labeling (Chakrabarti, Dom, and Indyk
1998), iterative convergence techniques (Neville and
Jensen 2000; Lu and Getoor 2003), belief propagation
(Taskar et al. 2002), and Gibbs sampling (Jensen, Neville,
and Gallagher 2004).
 In this paper, we observe that all collective inference
algorithms exploit relational features based on uncertain
(and thus noisy) class labels, which is potentially
problematic. However, they differ in how (if at all) they
manage such uncertainty while exploiting the relational
features. We call algorithms cautious if they seek to
explicitly identify and preferentially exploit the more
certain relational information, and otherwise call them
aggressive. On this basis, we develop novel generalizations
of three existing algorithms. In particular, we introduce
three parameters to control the degree of caution used by
collective inference algorithms, and conjecture that
cautious algorithms should attain higher classification
accuracies compared to their more aggressive variants.
Our investigations confirm that, indeed, the most cautious
algorithms perform best, and that caution enables a simple
iterative algorithm to outperform Gibbs sampling, a
popular yet much more computationally expensive choice.
 To date, collective inference algorithms have not been
thoroughly evaluated for their commonalities and
differences. Sen and Getoor (2006) did evaluate three
algorithms on synthetic data using a single classifier, and
found the Iterative Classification Algorithm (ICA) to be
the most reliable. In this paper, we generalize two popular
families of algorithms (including ICA), and evaluate them
using two base classifiers on three real world datasets.
 Our research is complementary to that of Jensen et al.
(2004). They use a single collective algorithm to examine
the impact that different types of relational links in the
model have on accuracy. We instead vary the collective
inference algorithm, focusing on how noisy intermediate
class labels are exploited in the algorithm. This effect has
only been partially addressed (Neville and Jensen 2000);
we discuss this in more detail after presenting our results.
 In the next section, we provide background on collective
classification. We then introduce our generalization of
collective classification algorithms and explain the
parameters for their degree of caution in exploiting
relational information. Finally, we present our
experimental evaluation and conclude with future work.

Collective Classification
In some classification tasks, the unlabeled instances can be
implicitly or explicitly related. For example, consider
classifying a university web page as belonging to a faculty
member or a student when many such pages may interlink.
Standard classifiers ignore such relations or links and
would classify a web page by considering only the features
derived from its contents (e.g., words it contains).
Classification accuracy can be increased by adding features
derived from the content of related instances (e.g., words
from the hyperlinked web pages). Even greater accuracy
increases can occur when the class label(s) of the related
web pages are used to derive relevant relational features
(Jensen et al. 2004). However, some or all of the class
labels of the related web pages are initially unknown and
need to be estimated or inferred to bootstrap the
classification process. For instance, initial estimates of
class labels can be obtained using content features only.
Next, these estimates could be used to compute the values
of the relational features and reclassify the instances. This
iterative process of inferring and reclassifying could be
repeated, possibly resulting in higher accuracy. However,
since some labels will be incorrect, there is also the
potential for relational features to harm performance. This
is the motivation for cautiously exploiting such features, as
we examine in the next section.

Collective classification algorithms simultaneously
classify interrelated instances using estimated or inferred
relational features. They have three primary characteristics:
• Related instances: The instances to be classified (e.g.,

web pages, emails) are explicitly or implicitly related.
• Classifier: To classify an instance i (e.g., a webpage),

the base classifier uses non-relational features (e.g., the
words in page i) and relational features (e.g., the most
common class label among other pages linked to i).
Many classifiers have been used for this purpose,
including Naïve Bayes (Jensen et al. 2004), Markov
networks (Taskar et al. 2002), case-based classifiers
(McDowell, Gupta, and Aha 2007), and logistic
regression (Lu and Getoor 2003). However, results with
different classifiers have seldom been compared.

• Collective inference: An inference algorithm is used to
update the class labels (or conditional probabilities),
which are then used to recompute the relational feature
values. As stated above, several inferencing techniques
have been used (e.g., Gibbs sampling and belief
propagation), but they have seldom been compared.

Algorithms for Collective Inference
We introduce two generalizations of existing collective
inference algorithms:
1. Iterative Collective Classification (ICC): ICC is a

generalization of (i) the unnamed iterative algorithm of
Neville and Jensen (2000), which is cautious, and (ii)
the ICA algorithm of Lu and Getoor (2003), which is

aggressive. This generalization introduces parameters to
control the propensity to use uncertain relational data.

2. Parameterized Gibbs Sampling for Collective
Classification (PGCC) Like ICC, this is a
generalization of Gibbs Sampling for collective
classification that introduces a parameter to control how
uncertain relational information is used.

We use a case-based classifier (k-NN) and a Bayesian
classifier with these algorithms.

Algorithm 1: Iterative Collective Classification
Figure 1 shows the pseudocode for the ICC algorithm,
which includes three parameters to control its degree of
caution. Before explaining the use of these parameters in
detail, we describe the algorithm in its most aggressive
mode (all three parameters are false) where it blindly uses
all available relational information in its entirety.

Aggressive ICC. In step 1, the algorithm computes the
values of all relational features for the fully labeled
training set. In step 2, a model is learned using the training
data. Step 3 is a bootstrapping step, where it predicts class
labels for the test instances using only non-relational
features. Steps 5-6 are ignored in the aggressive mode. In
step 7, the algorithm updates the relational feature values
based on its predictions. In step 8, it reclassifies the test set
using all features. Steps 7 and 8 then repeat for n iterations.
Lastly, step 9 returns the final set of class labels.

Cautious ICC. The aggressive mode of ICC can be
tempered by setting three Boolean parameters:

Parameter 1. ZfavorConfidentInstances for cautiously using
intermediate instance labels: In step 7 of ICC’s aggressive
mode, the relational feature values are computed assuming
that the assigned instance labels are all equally likely to be
correct. We modify this aggressive behavior to be more
cautious by only considering label assignments for which
we are more confident. To do this, we set ZfavorConfidentInstances
to true. With this setting, step 6 selects only the “best” K of

ICC(Tr,Te,NR,R,n,C, Z) =
// Tr=Training data, Te=Test data, NR=non-relational features,
// R=rel. features, n=#iterations, C=classifier, Z=Bool. params

1 Tr.R.values�setRelFeatures(Tr,R,ZtreatAbsentAsUnknown)
2 M�induce_model(Tr,NR,R,C) // Train
3 Te.Labels�classify(Te,Tr,M,NR,∅,C) // Bootstrap
4 for J = 0 to n // Iterate
5 if (J == 0) && (ZfavorTrainLinks)

 Te.Labels�∅ //Set all to unknown; use train labels only
6 else if (ZfavorConfidentInstances) // Keep top K labels

 K = (J / n) * |Te|
 Te.Labels�commit_best_k (Te.Labels, K)

7 Te.R.values�setRelFeatures(Te∪Tr,R,ZtreatAbsentAsUnknown)

8 Te.Labels�classify(Te,Tr,M,NR,R,C) // Classify

9 return Te.Labels // return most likely class per test instance

Figure 1. Pseudocode for iterative collective classification.

the current label assignments, “commits” those labels, and
sets all other labels to unknown. Step 7 then computes the
relational features using only the committed labels, and
step 8 classifies using this information. Step 6 gradually
increases the number of labels that are committed in each
iteration (e.g., if n=10, then the iterations commit {0%,
10%, 20%,…,100%} of the test set instances). Note that
instances “committed” in one iteration are not necessarily
committed again in the next.
 Leaving some label assignments as unknown in step 6
impacts the relational feature value computation in step 7
in two ways. First, feature values are computed without
using the unknown labels. Since this computation depends
only on the most reliable label assignments, subsequent
assignments should also be more reliable. Second, the
computed value of some features will be unknown (e.g.,
when an instance links only to instances labeled unknown).
 This approach requires determining the “best” K of the
current label assignments. We adopt Neville and Jensen’s
(2000) approach and use the probability of the most likely
class for each instance as a confidence measure. In
exploratory experiments, we found that alternative
measures (e.g., probability difference of top two classes)
produced similar results. This approach also requires that
the classifier handle features with unknown values.

Parameter 2 ZfavorTrainLinks for increasing caution by
favoring linked training set instance labels over linked test
set instance labels: A realistic collective classification
scenario frequently involves a test set with links to training
set instances (the “in-sample” task of Neville and Jensen
(2005)). For instance, a new set of web pages may be
published that link to pages with known labels. Such links
between the test and training sets provide known instance
labels (i.e., the most certain) for relational feature value
computation. Therefore, we add another degree of caution
by favoring the class labels of linked training instances
over the most confident estimations of labels from the test
set. To accomplish this, we set the ZfavorTrainLinks to true.
With this setting, in the first iteration, the relational feature
values are computed using only the links to instances in the
training set (via setting all test set labels to unknown in step
5). The behavior of subsequent iterations depends on the
value of ZfavorConfidentInstances.

Parameter 3 ZtreatAbsentAsUnknown for cautiously handling
absent links: Many machine learning algorithms assume
that their input data have no missing values. However,
relational features offer more complexity. In particular,
consider a relational feature that is true when an instance
has at least one outgoing link to an instance labeled “B”.
What is the value of this feature when an instance i does
not out-link to any other appropriate instances, regardless
of their current labels? For example, an instance may only
have incoming links or link only to instances not used in
the current task. In such cases, the aggressive approach for
using information entails setting the feature value to false –
essentially treating the absence of any link data as a
negative indicator for class “B.” Here, we consider a more
cautious alternative. When ZtreatAbsentAsUnknown is true, we set

the feature value to unknown for such instances. This
allows the feature to distinguish (a) instances that have no
appropriate links vs. (b) instances that do appropriately
link to other instances, but where those instances’ labels
are not “B.” The former case yields a feature value of
unknown; the latter, false. If ZtreatAbsentAsUnknown were false,
the feature value for both cases would be false.

Relation to previous work: With the parameters
ZfavorConfidentInstances and ZfavorTrainLinks set to false, ICC reduces
to the ICA algorithm of Lu and Getoor (2003) (aside from
different interleaving of steps 7 and 8). Similarly, when
only ZfavorConfidentInstances is set to true, ICC reduces to the
iterative algorithm described in Neville and Jensen (2000).
In their experiments, there were no effective links between
the test and training sets, so ZfavorTrainLinks would have no
effect. Regarding the parameter ZtreatAbsentAsUnknown, we
found no discussion of this issue in the collective inference
literature, although feature descriptions in several papers
(e.g., Neville and Jensen 2000; Lu and Getoor 2003)
suggest that a value of false would be (aggressively)
assigned for the instances we described.

Algorithm 2: Parameterized Gibbs Sampling for
Collective Classification (PGCC)
Figure 2 summarizes how Gibbs sampling can be applied
to collective inference. Steps 1-3 are identical to those in
Figure 1, with the exception that the classifier must output
distributions with the likelihood of each class. In step 5,
within the loop, the algorithm probabilistically samples the
current class label distributions and assigns a label to each
instance based on its distribution. In step 6, it records these
labels, and in step 7 it computes the relational features
given the current class labels. In step 8, it re-computes the
posterior class label probabilities given these relational
features. The process then repeats. When the process
terminates, the statistics recorded in step 6 approximate the
joint distribution of class labels, which is used in step 9 to
identify each instance’s most likely class label. These
labels are returned in step 10.

PGCC(Tr,Te,NR,R,n,C, Z) =
// Tr=Training data, Te=Test data, NR=non-relational features,
// R=rel. features, n=#iterations, C=classifier, Z=Bool. params
1 Tr.R.values�setRelFeatures(Tr,R, ZtreatAbsentAsUnknown)
2 M�induce_model(Tr,NR,R,C) // Train
3 Te.ClassProbs�classify(Te,Tr,M,NR,∅,C) // Bootstrap
4 for j =1 to n // Iterate
5 Te.Labels �sampleDist(Te.ClassProbs) // Sample

6 Te.Stats�updateStats(Te.Stats,Te.Labels) // Take stats

7 Te.R.values�setRelFeatures(Te∪Tr,R,ZtreatAbsentAsUnknown)

8 Te.ClassProbs�classify(Te,Tr,M,NR,R,C) // Classify

9 Te.Labels�pickMostLikelyClass(Te.Stats)

10 return Te.Labels // return most likely class for each instance

Figure 2. Collective classification using Gibbs sampling.

 Like ICC, we use ZtreatAbsentAsUnknown to cautiously handle
“absent” links. Gibbs sampling is inherently somewhat
cautious as it considers its confidence in estimated test set
labels when it re-samples the distribution in step 5,
although the classifier still treats all links equally. Unlike
with ICC, it’s unclear how to favor the training links while
still enabling the re-sampling to properly explore the state
space. These properties also apply to other algorithms such
as relaxation labeling; we will explore more in future work.

Computational Complexity Analyses
Both algorithms use space that is linear in the number of
instances (N). The dominant computation costs for both
stem from the relational features computation and instance
classification. Typically, instances are connected to a small
number of other instances, so the first cost is O(N). The
classification time per iteration is O(N) for Naive Bayes,
and is O(N2) for k-NN. Favoring more confident instances
requires sorting the instances by probability with a cost of
O(NlogN), although classification time usually dominates.
Therefore, the overall computational cost per iteration of
both algorithms is roughly the same. However, the number
of iterations varies significantly across the algorithms.
Based on Neville and Jensen (2000), we set n=10 for ICC
and found that more iterations did not improve
performance. In contrast, Gibbs sampling typically requires
thousands of iterations. Based on Neville and Jensen
(2004), we set n=2000 and ignored the first 200 iterations
for “burn-in” (larger n did not improve performance). The
comparatively larger number of Gibbs iterations implies
that ICC is much less expensive than PGCC.

Evaluation
Hypotheses. (1) The most cautious version of ICC
outperforms its aggressive version, (2) The cautious
version of PGCC outperforms its aggressive version.

Data Sets. We used the following data sets (see Table 1):
1. Cora (McCallum et al. 2000): A collection of machine

learning papers categorized into seven classes.
2. CiteSeer (Lu and Getoor 2003): A collection of

research papers drawn from CiteSeer (2006).
3. WebKB (Craven et al. 1998): A collection of web pages

from four computer science departments categorized
into six classes (Faculty, Student, Staff, Course,
ResearchProject, or Other). Other is problematic
because it is too general, representing 74% of the pages.
Like Taskar et al. (2002), we discarded all Other pages
that did not have at least three outgoing links, yielding a
total of 1541 instances of which 30% are Other.

In Cora and CiteSeer, links exist between the test and
training sets that can help collective inference (see links to
“different folds” in Table 1). This was previously
described as the “in-sample” classification task. For
WebKB, there are no links between the schools, so we
measure accuracy on the “out-of-sample” task.

Table 1. Data sets summary

Characteristics Cora CiteSeer WebKB
Instances 2708 3312 1541
Avg. links per instance (total) 4.01 2.77 6.59
Avg. links per inst.(to diff. fold) 1.46 0.30 0
Class labels 7 6 6
Non-rel. features available 1433 3703 100
Non-rel. features used 100 100 100
Relational features used 14 12 12
Folds 3 3 4

Feature Representation. We focus on collective
classification tasks involving data sets that are
predominantly textual (e.g., web pages or scientific
literature). Our instance representation includes relational
and non-relational features, as described below.

Non-relational (content features): We use a bag-of-words
representation for the textual content of instances. In
particular, we use a binary representation where the feature
corresponding to a word is assigned true if the word occurs
in the instance and false otherwise. For WebKB, we used
all 100 words available in our version of the dataset. For
Cora and CiteSeer, we used information gain on the
training set to identify and select the 100 highest-scoring
words to use as the non-relational features. Using more
words did not improve performance.

Relational features: We compute relational features like
the following:
 fB(i) = NeighborsB(i) / Neighbors(i) (1)
where Neighbors(i) is the number of instances hyperlinked
to instance i that are not labeled unknown, and
NeighborsB(i) is the number of such instances that
currently have the label “B.” If Neighbors(i) is zero, then
fB(i) is set to unknown if ZtreatAbsentAsUnknown is true (see
Figure 1) or false otherwise. There is one such feature per
possible class label. We compute individual features using
only incoming and only outgoing links. Thus, for a dataset
with six possible class labels, we compute 12 relational
features. We also investigated the use of binary features
and found the results consistent with those reported below.
Hence, we omit further details.

Classifiers. We used two classifiers with the algorithms:
1. NB: A naïve Bayes classifier (based on the Proximity

toolkit developed at the University of Massachusetts
Amherst, http://kdl.cs.umass.edu/proximity).

2. k-NN: A case-based classifier that uses the k-nearest
neighbor rule (k-NN). Similarities are computed with a
function that treats all features equally, but we
experimentally found consistent results with other
weighting functions. We used k=11 neighbors for voting.

Gibbs sampling requires that all input probabilities be non-
zero, so we smoothed the estimated probabilities.

Tested Algorithms. We considered a traditional
classification algorithm and the two collective inference
algorithms with their cautious variants as follows:

1. NonColl: is a traditional (i.e., non-collective)
classification algorithm that performs a single run of the
base classifier without any relational features.

2. We tested the following 4 variants of ICC ranging from
the most aggressive to the most cautious:
i. ICC0: ICC in its most aggressive form obtained by

setting the three cautious parameters to false.
ii. ICCU: A slightly cautious version of ICC obtained by

setting ZtreatAbsentAsUnknown to true.
iii. ICCU/Tr: A version of ICC that is even more cautious

than ICCU, obtained by setting ZfavorTrainLinks to true.
iv. ICCU/Tr/C: The most cautious version of ICC; it sets

all three cautious parameters to true (adding in the
favoring of more confident instances).

3. We tested two algorithms that use Gibbs sampling:
i. PGCC0: PGCC with ZtreatAbsentAsUnknown set to false.
ii. PGCCU: A more cautious variant of PGCC obtained by

setting ZtreatAbsentAsUnknown to true.

Performance Measure. We compared all the algorithms
for their average classification error rate on the test sets.

Test Procedure. We conducted an n-fold cross-validation
study for each algorithm and its variants. The Cora and
CiteSeer data sets, as provided to us, were split into three
roughly equal sized folds that preserved linking within a
fold, which we used as is. We did not use randomly
generated folds because that could remove the naturally
occurring relations, resulting in folds that would be
unrealistic for a collective classification task. For WebKB,
we conducted a 4-fold cross-validation study, treating each
of the four schools as a separate fold.

Analysis. We performed independent analyses for each
data set and joint analyses by pooling the observations
from all the data sets and across both classifiers. Our
conclusions are based on one-tailed paired t-tests accepted
at the 95% confidence level.

Results. Table 2 displays the classification error rates
averaged over all the folds for each algorithm. For each
data set and classifier, the best result is shown in bold.
Result 1. The most cautious variant of ICC significantly
outperforms its aggressive variant: Comparing ICC0 with

ICCU/Tr/C, we find that when all 3 cautious behaviors are
combined, they reduce classification error by 0.7% to
7.4%, for an average improvement of 3.8%. This
improvement is significant in every case except
CiteSeer+NB and WebKB+NB. Using a pooled data
analysis (not shown in Table 2), ICCU/Tr/C significantly
outperforms ICC0 (average errors of 31.7% vs. 35.5%
[p=0.003]). Therefore, we accept Hypothesis #1.
 Examining the individual contribution of parameter
settings reveals that the largest error reduction comes from
setting ZfavorConfidentInstances to true. For example, comparing
ICCU/Tr with ICCU/Tr/C, we notice that errors are reduced
in all six cases across the three data sets and two classifiers
(significantly, for Cora and Citeseer). A pooled data
analysis shows a significant improvement (31.7% vs.
34.1% [p=0.025]). The other two parameters also improve
performance, but comparatively less in magnitude and less
consistently across the data sets. For example, setting
ZtreatAbsentAsUnknown to true (ICCU) improves performance in
three cases (by 1.7% to 4%), and has negligible impact in
the others. The difference is significant for Cora+NB, and
for the pooled analysis (34.4% vs. 35.5% [p=0.037]).
Likewise, the incremental impact of setting ZfavorTrainLinks to
true (ICCU/Tr) is small (and not significant) in Cora+kNN
and essentially none otherwise. This is because Cora has
by far the most links between folds, and WebKB has none
(see Table 1).
Result 2. The cautious variant of PGCC does not
outperform the aggressive variant: Comparing PGCC0 vs.
PGCCU, we see that setting ZtreatAbsentAsUnknown to true has
negligible effect for CiteSeer, improves performance for
Cora and WebKB+kNN, and hurts performance with
WebKB+NB. Overall, we find that treating absent links as
unknown was generally helpful, but not in a statistically
significant manner. Therefore, we reject Hypothesis #2.
Result 3. The most cautious variant of ICC significantly
outperforms the most cautious variant of PGCC.
ICCU/Tr/C almost always outperforms PGCCU with the
exception of WebKB+kNN. The difference is significant
for Cora and CiteSeer+NB. In addition, a pooled analysis
shows ICCU/Tr/C significantly beats PGCCU (31.7% vs.
34.8% [p=0.001]). Note that this advantage over Gibbs
does not hold for less cautious variants (i.e., ICC0 and
ICCU).
Result 4. Collective classification algorithms, cautious or
otherwise, outperform non-collective classification: We
found that, for these classification tasks, collective
inference almost always improves accuracy across the two
inference algorithms and two classifiers. Using the pooled
analysis, the six collective classification approaches shown
in Table 2 each significantly outperform NonColl.
Considering the data set and classifier combinations
individually, WebKB+NB is the only exception. In this
combination, the baseline error rate is high, so there is
increased potential for decreased performance due to
uncertainty in instance labels. Nevertheless, when all three
cautious settings are used (with ICCU/Tr/C), collective
inference slightly reduces the error vs. NonColl.

Table 2. Average % classification error rate.

Cora CiteSeer WebKB
Algorithm

kNN NB kNN NB kNN NB
NonColl 39.1* 31.8* 39.1* 34.2* 46.0* 44.4
ICC0 28.8* 23.3* 31.5* 31.2 43.5* 47.8
ICCU 26.9* 21.6* 32.1* 31.1* 39.5 48.5
ICCU/Tr 25.1* 21.6* 31.9* 31.2* 39.5 48.5
ICCU/Tr/C 21.4 19.7 28.9 30.5 39.4 43.7
Gain† 7.4 3.6 2.6 0.7 4.1 4.1
PGCC0 26.6* 22.4* 31.7 30.9 44.2* 48.7
PGCCU 24.9* 21.2* 31.9 30.9* 39.1 53.2
* indicates significantly worse behavior than ICCU/Tr/C. Higher cross-

validation variance makes some comparisons not significant.
† indicates gain from caution (ICC0 – ICCU/Tr/C)

Discussion
Overall, cautious behavior for collective inference is highly
effective. Within an algorithm family, ICC or PGCC,
cautious settings improved performance. In particular, the
gains were larger and statistically significant for ICC. Also,
the most cautious ICC (ICCU/Tr/C) outperformed the best
PGCC. While further Gibbs tuning (e.g., with random
restarts) might marginally improve PGCC’s performance,
ICC’s ability to match or exceed PGCC’s results suggests
that ICC is a promising alternative.
 Our results show that favoring instances with higher
confidence class label predictions and favoring links to the
training set significantly improves performance. Although
Neville and Jensen (2000) previously showed that the
former factor could improve accuracy compared to a non-
relational classifier (e.g., NonColl), to our knowledge,
this paper is the first to (1) show that this approach
outperforms other collective algorithms (e.g., ICCU), (2)
identify two distinct factors providing its advantage, and
(3) evaluate its effects on more than one dataset.
 Our findings are inconsistent with those of Lu and
Getoor (2003) on the same datasets. They reported no
significant improvement from using a confidence-based
ordering derived from Neville and Jensen’s algorithm.
However, our algorithm differs in the way confidence is
used. In our approach, early ICC iterations utilize only
those instance labels that have high confidence, treating
others as unknown. In contrast, Lu and Getoor’s algorithm
instead utilizes all neighboring labels; the only change is in
the order in which these decisions are made. Our results
suggest that explicitly excluding the lower confidence
labels, via unknown values, is critical for effectively
utilizing confidence.

Conclusion
Collective inference has the potential to substantially
improve classification accuracy on interrelated data, but
must be carefully applied because uncertain predicted
labels can produce incorrect relational features that
diminish accuracy. We conjectured that cautious use of
such uncertain information could improve performance.
On this basis, we generalized two collective inference
algorithms to control their degree of caution when using
uncertain information. Our results demonstrated that,
indeed, “cautious” approaches can be more effective.
Furthermore, we showed how the simple ICC algorithm, in
its most cautious mode, could outperform Gibbs sampling,
a popular yet computationally expensive approach.
 Further research is needed to confirm our results using
other datasets and collective inference algorithms. Work is
also needed to compare the relative performance of
different types of cautious behaviors and to explore which
types of datasets benefit most from such caution. For
instance, how does the amount of label auto-correlation
and noise affect performance? Finally, most collective
algorithms have an asymmetry: models are trained using
fully correct instance labels, yet incorrect labels will be

present during testing. We intend to measure how cautious
behaviors naturally compensate for this asymmetry, and
also to explore other techniques for ameliorating it.

Acknowledgements
We thank the Naval Research Laboratory and the U.S.
Naval Academy for supporting this work. Thanks to
Frederick Crabbe, David Jensen, Donald Patterson, and the
anonymous reviewers for their helpful comments. Portions
of this analysis used Proximity, an open source software
environment from the Univ. of Massachusetts, Amherst.

References
Chakrabarti, S., Dom, B., and Indyk, P. (1998). Enhanced

hypertext categorization using hyperlinks. Proceedings of the
International Conference on Management of Data (pp. 307-
318). Seattle, WA: ACM.

CiteSeer (2006). CiteSeer.IST scientific literature digital library.
[http://citeseer.ist.psu.edu].

Craven, M., DiPasquo, D., Freitag, D, McCallum, A., Mitchell,
T., Nigam, K., and Slattery, S. (1998). Learning to extract
symbolic knowledge from the world wide web. Proceedings of
the Fifteenth National Conference on Artificial Intelligence
(pp. 509-516). Madison, WI: AAAI Press.

Jensen, D., and Neville, J. (2002). Autocorrelation and linkage
cause bias in evaluation of relational learners. Proceedings of
the Twelfth International Conference on Inductive Logic
Programming (pp. 101-116). Sydney, Australia: Springer.

Jensen, D., Neville, J., and Gallagher, B. (2004). Why collective
inference improves relational classification. Proceedings of the
Tenth International Conference on Knowledge Discovery and
Data Mining (pp. 593-598). Seattle, WA: ACM.

Lu, Q., and Getoor, L. (2003). Link-based classification.
Proceedings of the Twentieth International Conference on
Machine Learning (pp. 496-503). Washington, DC: AAAI.

McCallum, A., Nigam, K., Rennie, J., and Seymore, K. (2000).
Automating the construction of internet portals with machine
learning. Information Retrieval, 3, 127-163.

McDowell, L., Gupta, K. M., and Aha, D.W. (2007) Case-based
collective classification. In Proceedings of the Twentieth
International FLAIRS Conference. Key West, FL: AAAI.

Neville, J., and Jensen, D. (2000). Iterative classification in
relational data. In L. Getoor and D. Jensen (Eds.) Learning
Statistical Models from Relational Data: Papers from the AAAI
Workshop (Technical Report WS-00-06). Austin, TX: AAAI.

Neville, J., and Jensen, D. (2004). Dependency networks for
relational data. Proceedings of the Fourth International Conf.
on Data Mining (pp. 170-177). Brighton, UK: IEEE.

Neville, J., and Jensen, D. (2005). Leveraging relational
autocorrelation with latent group models. Proceedings of the
Fifth International Conference on Data Mining (pp. 322-329).
Houston, TX: IEEE.

Sen, P., and Getoor, L. (2006). Empirical comparison of
approximate inference algorithms for networked data. In A.
Fern, L. Getoor, and B. Milch (Eds.) Open Problems in
Statistical Relational Learning: Papers from the ICML
Workshop. Pittsburgh, PA: www.cs.umd.edu/projects/srl2006.

Taskar, B., Abbeel, P., and Koller, D. (2002). Discriminative
probabilistic models for relational data. Proceedings of the
Eighteenth Conference on Uncertainty in Artificial Intelligence
(pp. 485-492). Edmonton, Canada: Morgan Kaufmann.

