System Calls

SPIM provides a small set of operating-system-like services through the system
call (syscall) instruction. To request a service, a program loads the system call
code (see Figure A.9.1) into register $v0 and arguments into registers $a0-3%a3
(or $112 for floating-point values). System calls that return values put their
results in register $v0 (or $0 for floating-point results). For example, the follow-
ing code prints “the answer = 5™

.data

str:
.asciiz "the answer = "
Ltext
11 $v0, 4 4 system call code for print_str
la $a0, str # address of string to print
syscall # print the string
11 $v0, 1 {f system call code for print_int
11 $al, 5 ## integer to print
syscall ## print it

The print_int system call is passed an integer and prints it on the console.
print_float prints a single floating-point number; print_double prints a
double precision number; and print_string is passed a pointer to a null-ter-
minated string, which it writes to the console.

The system calls read_int, read_float, and read_double read an entire
line of input up to and including the newline. Characters following the number
are ignored. read_string has the same semantics as the UNIX library routine
fgets. It reads up to n — 1 characters into a buffer and terminates the string with
a null byte. If fewer than n — 1 characters are on the current line, read_string
reads up to and including the newline and again null-terminates the string.

Warning: Programs that use these syscalls to read from the terminal should not
use memory-mapped [/O (see Section A.8).

sbrk returns a pointer to a block of memory containing » additional bytes.
exit stops the program SPIM is running. exitZ terminates the SPIM program,
and the argument to ex1tZ2 becomes the value returned when the 5PIM simulator
itself terminates.

print_char and read_char write and read a single character. open, read,
write,and close are the standard UNIX library calls.

