
1

Slide Set #21:
Exploiting ILP

Chapter 6 and beyond

2

Basic Pipelining Wrap-up
(from Slide Set 20)

3

Pipelining

• Improve performance by increasing instruction throughput
Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
200 400 600 800 1000 1200 1400 1600 1800

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch

800 ps

800 ps

800 ps

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
200 400 600 800 1000 1200 1400

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch

Instruction
fetch

Reg ALU Data
access Reg

Reg ALU Data
access Reg

200 ps

200 ps

200 ps 200 ps 200 ps 200 ps 200 ps

Ideal speedup is number of stages in the pipeline. Do we achieve this?

4

Clock cycle time
(vs. single cycle)

How many instructions executing at
once?

Each stage has its own set of
hardware?

Split instruction into multiple stages
(1 per cycle)?

Amount of hardware used
(vs. single cycle)

PipelinedMulticycle

Big Picture
• Remember the single-cycle implementation

– Inefficient because low utilization of hardware resources
– Each instruction takes one long cycle

• Two possible ways to improve on this:

5

Pipelining and Beyond

6

Exploiting More ILP

• ILP = __________________ _________________ ________________
(parallelism within a single program)

• How can we exploit more ILP?

1. ________________________
(Split execution into many stages)

2. ___________________________
(Start executing more than one instruction each cycle)

7

Example – Multiple Issue

How many cycles does it take for this code to execute on a 2-issue CPU?

add $t0, $t1, $t2

lw $s1, 0($s2)

add $t0, $t0, $t4

sw $s1, 0($s3)

Answer?

8

Multiple Issue Processors

• Key metric: CPI ���� IPC

• Key questions:
1. What set of instructions can be issued together?

2. Who decides which instructions to issue together?
– Static multiple issue

– Dynamic multiple issue

9

Multiple Issue Processors

• What extra hardware do we need to do Static Multiple Issue?

• What else for Dynamic Multiple Issue?

10

Example – MIPS Static Multiple Issue

11

Example – Dynamic Multiple Issue Scheduling

PAT06F49.eps

Instruction fetch
and decode unit

Reservation
station

Reservation
station

Reservation
station

Reservation
station

Integer Integer Floating
point

Load/
Store

Commit
unit

In-order issue

Out-of-order execute
Functional

units

In-order commit

...

...

12

Exercise #1

Assume you must execute the following instructions in order. In any one
cycle you can issue at most one integer op and one load or store. Show
the resultant pipeline diagram. What’s the total number of cycles?

If you can’t issue an instruction on a certain cycle, wait for the next cycle.

lw $t0, 0($s2)

sub $s1, $t0, $s3

lw $t2, 0($s2)

add $a0, $a1, $a2

add $a0, $a0, $a3

13

Exercise #2

Use same assumptions as with Exercise #1, but first schedule the code to
try and eliminate stalls. Show the new pipeline diagram and total
number of cycles.

lw $t0, 0($s2)

sub $s1, $t0, $s3

lw $t2, 0($s2)

add $a0, $a1, $a2

add $a0, $a0, $a3

14

Exercise #3: Static vs. Dynamic Multiple Issue

• Which do you think has been commercially successful – static or
dynamic issue? Why?

15

Exercise #4

• Look ahead at the slide for Idea #4 – loop unrolling. What is the
possible bug?

16

Ideas for improving Multiple Issue

1. Non-blocking caches

2. Speculation

3. Register renaming

4. Loop unrolling

17

Idea #3: Register renaming

lw $t0, 0($s0)

sw $t0, 4($s0)

lw $t0, 0($s2)

sw $t0, 4($s2)

Problem?

Solution?

18

Idea #4: Loop unrolling

Loop: lw $t0, 0($s1)

sw $t0, 0($s2)

addi $s1, $s1, -4

addi $s2, $s2, -4

bne $s1, $zero,Loop

Loop: lw $t0, 0($s1)

lw $t1, 4($s1)

lw $t2, 8($s1)

lw $t3,12($s1)

sw $t0, 0($s2)

sw $t1, 4($s2)

sw $t2, 8($s2)

sw $t3,12($s2)

addi $s1, $s1, -16

addi $s2, $s2, -16

bne $s1, $zero,Loop
Why is this a good idea?

19
Slower Faster

Instructions per clock (IPC = 1/CPI)

Multicycle
(Section 5.5)

Single-cycle
(Section 5.4)

Deeply
pipelined

Pipelined

Multiple issue
with deep pipeline

(Section 6.10)

Multiple-issue
pipelined

(Section 6.9)

Chapter 6 Summary

