
1

SI232
Set #15: Multicycle Implementation

(Chapter Five)

2

Recall – Single Cycle Implementation

3

Evaluation – Single Cycle Approach

• Good:

• Bad:

4

• Break up the instructions into steps, each step takes a cycle
– balance the amount of work to be done
– restrict each cycle to use only one major functional unit:

• At the end of a cycle
– store values for use in later cycles
– introduce additional “internal” registers

• Each instruction will take _________ cycles to fully execute

Multicycle Approach

5

Simplified Multicycle Datapath

6

Breaking down an instruction

• Steps for an R-type instruction:

– IR <= Memory[PC]

– A <= Reg[IR[25:21]]

– B <= Reg[IR[20:16]]

– ALUOut <= A op B

– Reg[IR[15:11]] <= ALUOut

• What did we forget?

• Above notation is called RTL – Register Transfer Language

7

Example #1 – sub $t0, $s1, $s2

1. IR <= Memory[PC]
2. A <= Reg[IR[25:21]]
3. B <= Reg[IR[20:16]]
4. ALUOut <= A op B
5. Reg[IR[15:11]] <= ALUOut
6. PC <= PC + 4

8

Example #2 – lw $t0, 8($s2)

1. IR <= Memory[PC]
2. A <= Reg[IR[25:21]]
3. ALUOut <= A + sign-extend(IR[15-0])
4. MDR = Memory[ALUOut]
5. Reg[IR[20-16]] = MDR
6. PC <= PC + 4

9

How many cycles do we need?

IR <= Memory[PC]
A <= Reg[IR[25:21]]
B <= Reg[IR[20:16]]
ALUOut <= A op B
Reg[IR[15:11]] <= ALUOut
PC <= PC + 4

In once cycle can do: Register read or write, memory access, ALU

Cycle # Task (for R-type instruction)

a.) Fill in the cycle number for each task below

b.) What is the total number of cycles needed?

10

Exercise #1: How many cycles do we need?

IR <= Memory[PC]
A <= Reg[IR[25:21]]
ALUOut <= A + sign-extend(IR[15-0])
MDR = Memory[ALUOut]
Reg[IR[20-16]] = MDR
PC <= PC + 4

In once cycle can do: Register read or write, memory access, ALU

Cycle # Task (for load instruction)

a.) Fill in the cycle number for each task below

b.) What is the total number of cycles needed?

11

Exercise #2: How many cycles do we need?

IR <= Memory[PC]
A <= Reg[IR[25-21]]
B <= Reg[IR[20-16]]
ALUOut <= A + sign-extend(IR[15-0])
Memory[ALUOut] = B
PC <= PC + 4

In once cycle can do: Register read or write, memory access, ALU

Cycle # Task (for store instruction)

a.) Fill in the cycle number for each task below

b.) What is the total number of cycles needed?

12

Exercise #3: How many cycles do we need?

IR <= Memory[PC]
PC <= PC + 4
A <= Reg[IR[25-21]]
B <= Reg[IR[20-16]]
ALUOut <= PC + (sign-extend(IR[15-0]) << 2)

if (A ==B) PC = ALUOut

In once cycle can do: Register read or write, memory access, ALU

Cycle # Task (for branch instruction)

a.) Fill in the cycle number for each task below

b.) What is the total number of cycles needed?

13

Exercise #4

• The branch instruction from Exercise #3 can’t really be executed
given our simple datapath – why not?

14

• Goals:
– Pack as much work into each step as possible

– Share steps across different instruction types

• 5 Steps
1. Instruction Fetch
2. Instruction Decode and Register Fetch
3. Execution, Memory Address Computation, or Branch Completion
4. Memory Access or R-type instruction completion
5. Write-back step

Multicycle Implementation

15

IR <= Memory[PC];

PC <= PC + 4;

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

16

• Read registers rs and rt
A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];

• Compute the branch address
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

• Does this depend on the instruction type?

• Could it depend on the instruction type?

Step 2: Instruction Decode and Register Fetch

17

• ALU function depends on instruction type

• 1. ______________________

ALUOut <= A + sign-extend(IR[15:0]);

• 2. ______________________

ALUOut <= A op B;

• 3. ______________________

if (A==B) PC <= ALUOut;

Step 3 (instruction dependent)

18

• Loads and stores access memory

MDR <= Memory[ALUOut];
or

Memory[ALUOut] <= B;

• R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R-type or memory-access)

19

• Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Step 5: Write-back

20

Summary:

21

• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not taken
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?

• In what cycle does the actual addition of $t2 and $t3 takes place?

Questions

22

Control for Multicycle Implementation

Control for “sub $t0, $s1, $s2”
ALUSrcA =
ALUSrcB =

24

Multicycle Control

• Control for single cycle implementation was ________________ ,

based only on the ____________

• Control for multicycle implementation will be ________________,

based on the __________ and current ______________

• We’ll implement this control with state machines

25

Two Weird Things

1. For enable signals (RegWrite, MemRead, etc.) we’ll write down the
signal only if it is true.
For multiplexors (ALUSrcA, IorD, etc.) , we’ll always say what the
value is. (unless it’s a “don’t care”)

2. Some registers are written every cycle, so no write enable control
for them (MDR, ALUOut).
Others have explicit control (register file, IR)

Random (but useful) Refresher:
ALUOp = 00 � ALU adds
ALUOp = 01 � ALU subtracts
ALUOp = 10 � ALU uses function field

Step 1: Instruction Fetch
IR <= Memory[PC]
PC <= PC + 4

Example Control

Step 2: Decode/Register Fetch
A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

Example Control

Step 3:
ALUOut <= A + sign-extend(IR[15:0]);

Step 4:
MDR = Memory[ALUOut]

Step 5:
Reg[IR[20-16]] = MDR

Exercise #1: Specify control signals needed for a load instruction

Step 3:
ALUOut <= A op B

Step 4:
Reg[IR[15:11]] <= ALUOut;

Exercise #2: Specify control signals needed for a R-type instruction

Step 3:
if (A==B) PC <= ALUOut;

Exercise #3: Specify control signals needed for a branch instruction

Exercise #4: Write out steps 3-4 for a store instruction and show the
control signals needed

Exercise #5: Write out the step(s) (beyond 1 and 2) needed for
a “jump” instruction, along with associated control.

33

• How many state
bits will we need?

Graphical Specification
of FSM

34

• Implementation:

Finite State Machine for Control

PCWrite

PCWriteCond
IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register�
opcode field

Outputs

Control logic

Inputs

35

Chapter 5 Summary

• If we understand the instructions…
We can build a simple processor!

• If instructions take different amounts of time, multi-cycle is better

• Datapath implemented using:

– Combinational logic for arithmetic

– State holding elements to remember bits

• Control implemented using:

– Combinational logic for single-cycle implementation

– Finite state machine for multi-cycle implementation

