
1

IC220
Slide Set #8: Digital Logic Finale

(Appendix B)

2

ADMIN

• Project 1 due Wed Feb 6

– Recall – No collaboration – start early & see instructor for help

• READING

– Appendix: Read B.7,B.8,B.9, B.10, and B.12.

(skip the Verilog details).

• Course Paper description due by Fri Feb 22 for approval

– Current computer architectural topic/issue

– 3-5 pages

– Suggested topics on course calendar – but a topic alone is not a

description! (see online instructions)

• 6 week exam, in class, Wed February 13

3

Big Picture

• Computer Overview (Chapter 1)
• A specific instruction set architecture (Chapter 2)

• Logic Design (Appendix B)
• Arithmetic and how to build an ALU (Chapter 3)
• Performance issues (Chapter 4)

• Constructing a processor to execute our
instructions (Chapter 5)

• Pipelining to improve performance (Chapter 6)
• Memory: caches and virtual memory (Chapter 7)
• I/O (Chapter 8)

• A few advanced topics

4

“Real World” Example

• Buzzer Feature for a Car

• Should Buzz when

1. the engine is on, the door is closed, and the seat belt is

unbuckled

2. the engine is on, the door is open

• What are our input(s)?

• What are our output(s)?

(extra space)

6

Check Yourself

• Could you have filled in the truth table?

• Could you have filled in the K-Map?

• Can you use the K-Map to minimize the equation?

• Can you draw the circuit?

7

Bigger Units of Combinational Logic

• Gates useful but fairly low level

• Easier to constructs circuits with higher-level building blocks

instead:

– Combinational Logic

• Multiplexors (mux)

• Decoders

– (later) Sequential Logic

• Registers

• Arithmetic unit (ALU)

• What is this an example of?

8

Multiplexor – Example Usage

Adder

$t0

$t1

$t2

$a3

$a2

9

Multiplexor – 1-bit version

• Think of a mux as a selector

• S selects one input to be the output

• N-way mux has

– # inputs:

– # selector lines (S):

– # outputs:

• Implementation?

D0
D1
D2
D3

S0
S1

EN

Q

10

Multiplexor – Wider version

• 32 bit wide, 2-way Mux:

• Pictures don’t always show the width

(especially if 32 bits)

EX: B-31 to B-32

11

End of Combinational Logic

12

Combinational vs. Sequential Logic

• Combinational Logic – output depends only on

• Sequential Logic – output depends on:

• Previous inputs are stored in “state elements”

– __________ determines when an element is updated

• State elements will involve use of feedback in circuit

– Not permitted in combinational circuits

13

Truth Tables ���� Next State Tables

• New kind of input:

1110

0001

0101

0011

1

0

0

0

A

111

101

110

000

Qt+1QtB

14

Clocks and State Elements

• Clock Frequency is the __________ of _______________.

• When should updates occur to state elements?

– Edge – change state when

– Level – change state when

15

D-Type Flip Flop

• State only changes

• Otherwise…

remembers previous state

• Abstraction:
D

C

Q

Q-flipflop

EX: B-41

16

State Diagrams

• State = Contents of memory

• Diagrams are a tool to

represent ALL transitions

from one state to another

– What causes state

changes?

• Example for D Flip-Flop:

Q=0 Q=1

17

Finite State Machines

• Can use state diagrams to express more complex sequential logic.

• Example: Candy Machine

– Inputs: N (nickel received), D (dime received)

– Outputs: C (dispense candy), R (give refund)

– Should dispense candy after 15 cents deposited, + refund if

overpaid. Then await next customer.

• We’ll use Moore machine – output depends only on

• What states do we need?

18

Example: Candy Machine

Inputs: (N)ickel, (D)ime

Outputs: (C)andy, (R)efund

EX: B-51 to B-53

19

Implementing Finite State Machines

• Squares =

• Circles =

• We don’t always show the clock for registers/memory diagrams, but

will be implicit
20

FSM Example

21

Combining Combinational and Sequential Logic

• Finite State Machine was our first example of this

• Two general patterns:

1. State Machine

2. Pipeline

• In either case, have important timing concerns

– Output of combinational logic block may oscillate before settling

– Clock cycle time must be long enough so combo-logic settles before

the sequential logic (state) reads the new value

– State elements ensure that combo-logic inputs remain stable

22

Registers and Register Files

• Registers store data (bits) (i.e. have memory)

– Each register =

• Register files contain:

– Set of registers

– Logic for read/write

• MIPS register file has how

many registers?

• How does it store data?

• How does it know which

register to access?

23

Memory

• Why so many types?

• Basic types:

– RAM “random access memory” (read/write)

• Main memory

• Volatile

• Types:

– SRAM – async, sync, pipeline burst, cache;

– DRAM – M, FPM, EDO, burst EDO, sync, DR, DDR

– ROM (read only)

• Small

• Stores critical operating instruction (BOOT strap)

• Non-volatile

• Common in embedded system (toys, cameras, printers, etc)

• Types: PROM, EPROM, EEPROM, flash memory

24

Appendix B Summary

• Truth tables and Gates

– AND, OR, NOT, NOR, NAND, XOR

• Boolean Algebra

– Distributive, DeMorgan’s, Inverse, Identity, etc

• Combinational Logic

– Circuits – Design, reduction / minimization, K-maps

– Multiplexor

• Sequential Logic

– Flip/flops

– Clock & state diagrams

• Register files

• Memory

– RAM vs ROM, SRAM vs. DRAM

