Addressing in Conditional Branches

Read Section 2.9 of text!
« You should understand the basics of “PC-relative” addressing

1C220
SlideSet #4: Procedures
(Chapter 2 finale)
Stack Example Procedure Example & Terminology
Action Stack Output void function1() {
push(3) inta, b, c, d;
push(2) .a"= function2(b, c, d);
push(1) }
pop()
pop() int function2(int b, int c, int d) {
push(6) intx,y, z;
pop() ;‘;turn X;
pop())

pop()

Big Picture — Steps for Executing a Procedure Step #1: Placement of Parameters

1. Place parameters where the callee procedure can access them « Assigned Registers:

+ If more than four are needed?
2. Transfer control to the callee procedure

3. (Maybe) Acquire the storage resources needed for the callee procedure
« Parameters are not “saved” across procedure call
4. Callee performs the desired task

5. Place the result somewhere that the “caller” procedure can access it

6. Return control to the point of origin (in caller)

Step #2: Transfer Control to the Procedure Step #3: Acquire storage resources needed by callee
+ Jjal - + Suppose callee wants to use registers $s1, s2, and $s3
— Jumps to the procedure address AND links to return address — But caller still expects them to have same value after the call

— Solution: Use stack to
« Link saved in register
— What exactly is saved?

« Saving Registers $s1, $s2, $s3

addi , , #

— Why do we need this? sw $s1, __ ($sp) #
Allows procedure to be called at points in sw $s2, __ ($sp) #
code, times, each having a sw $s3, __(3sp) #

return address

Step #3 Storage Continued

High addness
Contents of register
Contents of register
Contents of register
Low address ER b

Step #5: Place result where caller can get it

+ Placement of Result
— Must place result in appropriate register(s)
¢ If 32-bit value:

o If 64-bit value:

« Often accomplished by using the $zero register
— If result is in $t0 already then

add , $zero

RS

Step #4: Callee Execution

« Use parameters from and

(setup by caller)

« Temporary storage locations to use for computation:
1. Temporary registers ($t0-$t9)
2. Argument registers ($a0-$a3)
if...
3. Other registers
but...
4. What if still need more?

Step #6: Return control to caller — Part A

« Part | - Restore appropriate registers before returning from the procedure

— Iw $s3, 0($sp) # restore register $s0 for caller
— lw $s2, 4($sp) # restore register $t0 for caller
— Iw $s1, 8($sp) # restore register $t1 for caller
— add $sp, $sp, # adjust stack to delete 3 items

High addness

Contents of register

Contents of register

Contents of register

Low address a. b

Step #6: Return control to caller — Part B Recap — Steps for Executing a Procedure

« Part Il - Return to proper location in the program at the end of the 1. Place parameters where the callee procedure can access them

procedure

— Jump to stored address of next instruction after procedure call

ir

Example — putting it all together

2. Transfer control to the callee procedure

3. (Maybe) Acquire the storage resources needed for the callee procedure
4. Callee performs the desired task

5. Place the result somewhere that the “caller” procedure can access it

6. Return control to the point of origin (in caller)

Register Conventions

« Write assembly for the following procedure

int dog (int n)
{
n=n+7;
return n;

« Call this function to compute dog(5):

*Register Convention — for “Preserved on Call” registers (like $s0):
1. If used, the callee must store and return values for these registers
2. If not used, not saved

Name |Regi# |Usage Preserved on Call
$zero 0 constant value 0 N/A
Sat 1 assembler temporary N/A
so-si | aa |l o e No
$a0 - $a3 47 arguments passed to function (or system call) No
$10 - $17 8-15 |temporary registers (functions) No
$50 - $s7 16-23 |saved registers (main program) Yes
$t8 - $19 24-25 |temporary registers (functions) No
$KO - $k1 2627 |reserved for OS N/A
Sgp 28 |global pointer Yes
$sp 29 stack pointer Yes
S$fp 30 frame pointer Yes

$ra 31 return address (function call) Yes

Nested Procedures

« What if the callee wants to call another procedure — any problems?

+ Solution?

+ This also applies to recursive procedures

Example — putting it all together (again)

« Write assembly for the following procedure

int cloak (int n)
{
if (n < 1) return 1;
else return (n * dagger(n-1));

« Call this function to compute cloak(6):

Nested Procedures

- “Activation record” — part of stack holding procedures saved values and local
variables

« $fp - points to first word of activation record for procedure

High addmess
§fp—~ | $Fpw]
fspo= $5p—=|
0| Saved angument
regisiars [any}
Saved return address
Saved saved
ragistars (¥ any}
Local amays and
§op-w| Siruchnes (i any)
Low addrass n b. -8

int cloak (int n) {

Example — putting it all together it@<Drewni

else return (n * dagger(n-1)); }

cloak:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)

slti $t0, $a0, 1
beq $t0, zero, L1

addi $v0, $zero, 1
addi $sp, $sp, 8
jr $ra

Ll:
addi $a0, $a0, -1
jal dagger

lw $a0, 0($sp)
mul $v0, $a0, $vO # pretend

1w $ra, 4($sp)
addi $sp, $sp, 8

jr $ra

What does that function do? MIPS Addressing Summary

1. Immediate addressing

R B R
int cloak (int n) 2. Register addressing
{ Register
if (n < 1) return 1; 3. Base addressing
! Memory
else return (n * dagger(n-1)); N N i
}
4. PC-relative addressing
w s | o Aodress Memory
PC] & Word |

%I—]

5. Pseudodirect addressing

I T

o] Q Word |

l—f—]

MIPS Memory Organization Alternative Architectures
bsp—=TFff Fffc,., Stack « MIPS philosophy — small number of fast, simple operations
l. — Name:
« Design alternative:
1' — Name:
D.I"""Bm.ﬂ daia — provide more powerful operations
' — goal is to reduce number of instructions executed
$gp—=100d0 BOO e Saalic daka — Example VAX: minimize code size, make assembly language easy
1000 0D]n - ' instructions from 1 to 54 bytes long!
Taxt — Others: PowerPC, 80x86
pet —=00a0 000G, — Danger?
8]

« Virtually all new instruction sets since 1982 have been

80x86 A dominant architecture: 80x86

« 1978: The Intel 8086 is announced (16 bit architecture) « See your textbook for a more detailed description
+ 1980: The 8087 floating point coprocessor is added + Complexity:
+ 1982: The 80286 increases address space to 24 bits, +instructions — Instructions from 1 to 17 bytes long
« 1985: The 80386 extends to 32 bits, new addressing modes — one operand must act as both a source and destination
« 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions — one operand can come from memory
(mostly designed for higher performance) — complex addressing modes
+ 1997: MMX is added e.g., “base or scaled index with 8 or 32 bit displacement”

+ Saving grace:

“This hists illustrates the i t of the “golden handcuffs” of tibilit; . .

s history flustrates the Impact of the “golden hanceufls™ of compatibtity — Hardware: the most frequently used instructions are...
“adding new features as someone might add clothing to a packed bag”

— Software: compilers avoid the portions of the architecture...
“an architecture that is difficult to explain and impossible to love”

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

Chapter Goals Summary — Chapter Goals
1.Teach a subset of MIPS assembly * (1) Teach a Sl:lbset of MIPS assembly language _
— Show how high level language constructs are expressed in
language assembly
+ Demonstrated selection (if, if/else) and repetition (for,
2.Introduce the stored program concept while) structures
. . . » MIPS instruction types
3.Expla|n hOW MIPS Instructions are + Various MIPS instructions & pseudo-instructions
represented in machine language * Register conventions

+ Addressing memory and stack operations

4.lllustrate basic instruction set design
principles

MIPS

MIPS operands
Name Example c t

9, $zexo, |Fastlocations for data. In MIPS, data must be in registers to perform
32 registers |$a Sap, [arithmetic. MIPS register Szero always equals 0. Register Sat is

Stp, sat reserved for the assembler to hande large constants;
Memory[0], [Accessed only by data transfer instructions. MIPS uses byte addresses, so
0
2% memory |Memoryi4], sequential words differ by 4. Memory holds data structures, such as amays
words and spilled redisters. such as procedure calls.
MIPS assembly language
Calegory Instruction Example Meaning Comment;
add add $s1, 552, 553 [ssl - §52 + $53 Three operands; data in registers
Arithmetic ~ [subtract 553|551 - 5

552 - 553 Three operands; data in registers

add immediate

Used to

oad word 1522 + 100 Worg from memory to register
tore word Memory[952 + 100] = $s1 |Word from reaister to memon
Data transfer [load byte 100(552) [5s1 - Memoryi#52 + 100]|Byte from memory to redister
store byte 100(552) |Memory[$52 + 100] = $s1_|Byte from redister to memory
(0ad upper immediate 00 451 = 100 2 Loads constant in upper 16 bits
branchonequal |be %52, 25 [i(35L - ssZgoto Equal test; PC-elative branch
PG+ 44100
branch on not equal [bne 351, §s2, 25 fif(ssl 1= $s2)goto [Not equal test; PC-relative
PC+ 441
Conditional Crdri00
branch setontess than |51t $s1, $s2, §s3 [i(s ssia1 (Compare less than; for beq, bne
eiso
Set less than SIti §s1, $s2, 100 [1(s=2 E Compare less than constant
immediate else 551 =0
lumo. 3 g0 t0 10000 Jump to target address.
Uncondi- [iump redister ir o t0 Sra For switch. procedure return
tional jump__jump and ink jal $ra = PC + 4:0 10 10000 |For procedure cal

Summary — Chapter Goals

* (3) Explain how MIPS instructions are represented
in machine language
— Instruction format and fields
— Differences between assembly language and
machine language
— Representation of instructions in binary

R l op | rs | rt | rd | shamtl functl
I l op | rs | rt | 16 bit address l

J l op | 26 bit address l

Summary — Chapter Goals

(2) Stored Program Concept
« Instructions are composed of bits / bytes / words

« Programs are stored in memory
— to be read or written just like data

memory for data, programs,
compilers, editors, etc.

Processor (Memory

« Fetch & Execute Cycle
— Instructions are fetched and put into a special register
— Bits in the register "control” the subsequent actions
— Fetch the “next” instruction and continue

Summary — Chapter Goals

* (4) lllustrate basic instruction set design principles
1.
Instructions similar size, register field in same place in each instruction format

— Only 32 registers rather than many more

Providing for larger addresses and constants in instructions while keeping all
instructions the same length

Immediate addressing for constant operands

