
1

IC220
Set #10:

More Computer Arithmetic (Chapter 3)

2

ADMIN

• Course paper descriptions – due Fri Feb 22 via plain text email (not
MS Word)

– See details online

3

The ALU is the ‘brawn’ of the computer

• What does it do?

• How wide does it need to be?

• What outputs do we need for MIPS?

b

a

operation

An Arithmetic Logic Unit (ALU)

4

A simple 32-bit ALU

R e s u lt 3 1

a 3 1

b 3 1

R e s u lt 0

C a rr y In

a 0

b 0

R e s u lt 1

a 1

b 1

R e s u lt 2

a 2

b 2

O p e ra t io n

A L U 0

C a rry In

C a rry O u t

A L U 1

C a rry In

C a rry O u t

A L U 2

C a rry In

C a rry O u t

A L U 3 1

C a rry In

5

ALU Control and Symbol

Set on less than0111

NOR1100

Subtract0110

Add0010

OR0001

AND0000

FunctionALU Control Lines

6

• More complicated than addition

– accomplished via shifting and addition

• Example: grade-school algorithm

0010 (multiplicand)

__x_1011 (multiplier)

• Multiply m * n bits, How wide (in bits) should the product be?

Multiplication

7

Multiplication: Simple Implementation

64-bit ALU

Control test

Multiplier

Shift right

Product

Write

Multiplicand

Shift left

64 bits

64 bits

32 bits

9

Using Multiplication

• Product requires 64 bits

– Use dedicated registers

– HI – more significant part of product

– LO – less significant part of product

• MIPS instructions

mult $s2, $s3

multu $s2, $s3

mfhi $t0

mflo $t1

• Division

– Can perform with same hardware! (see book)

div $s2, $s3 Lo = $s2 / $s3

Hi = $s2 mod $s3

divu $s2, $s3

10

Floating Point

• We need a way to represent

– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., .000000001

– very large numbers, e.g., 3.15576 ×××× 1023

• Representation:

– sign, exponent, significand:

• (–1)sign ×××× significand ×××× 2exponent(some power)

– Significand always in normalized form:

• Yes:

• No:

– more bits for significand gives more

– more bits for exponent increases

11

IEEE754 Standard

Significand (20 bits)Exponent (11 Bits)S

0123456789...1718192021...28293031

Significand (23 bits)Exponent (8 Bits)S

0123456789...202122232425262728293031

Single Precision (float): 8 bit exponent, 23 bit significand

Double Precision (double): 11 bit exponent, 52 bit significand

More Significand (32 more bits)

0123456789...1718192021...28293031

12

IEEE 754 – Optimizations

• Significand

– What’s the first bit?

– So…

• Exponent is “biased” to make sorting easier

– Smallest exponent represented by:

– Largest exponent represented by:

– Bias values

• 127 for single precision

• 1023 for double precision

• Summary: (–1)sign ×××× (1+(1+(1+(1+significand) ×××× 2exponent – bias

13

Example #1:

• Represent -5.7510 in binary, single precision form:

• Strategy

– Transfer into binary notation (fraction)

– Normalize significand (if necessary)

– Compute exponent

• (Real exponent) = (Stored exponent) - bias

– Apply results to formula

(–1)sign ×××× (1+(1+(1+(1+significand) ×××× 2exponent – bias

Example #1:
Represent -9.7510 in binary single precision:

• -9.7510 =

• Compute the exponent:

– Remember (2exponent – bias)

– Bias = 127

• Formula(–1)sign ×××× (1+(1+(1+(1+significand) ×××× 2exponent – bias

0123456789...202122232425262728293031

15

Floating Point Complexities

• Operations are somewhat more complicated (see text)

• In addition to overflow we can have “underflow”

• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round

– four rounding modes

– positive divided by zero yields “infinity”

– zero divide by zero yields “not a number”

– other complexities

• Implementing the standard can be tricky

16

MIPS Floating Point Basics

• Floating point registers

$f0, $f1, $f2, …., $f31

Used in pairs for double precision (f0, f1) (f2, f3), …

$f0 not always zero

• Register conventions:

– Function arguments passed in

– Function return value stored in

– Where are addresses (e.g. for arrays) passed?

• Load and store:

lwc1 $f2, 0($sp)

swc1 $f4, 4($t2)

17

MIPS FP Arithmetic

• Addition, subtraction:add.s, add.d, sub.s, sub.d

add.s $f1, $f2, $f3

add.d $f2, $f4, $f6

• Multiplication, division: mul.s, mul.d, div.s, div.d

mul.s $f2, $f3, $f4

div.s $f2, $f4, $f6

18

MIPS FP Control Flow

• Pattern of a comparison: c.___.s (or c.___.d)

c.lt.s $f2, $f3

c.ge.d $f4, $f6

• Where does the result go?

• Branching:

bc1t label10

bc1f label20

19

Example #1

• Convert the following C code to MIPS:

float max (float A, float B) {

if (A <= B) return A;

else return B;

}

20

Example #2

• Convert the following C code to MIPS:

void setArray (float F[], int index,

float val) {

F[index] = val;

}

EX: 3-21 …

21

Chapter Three Summary

• Computer arithmetic is constrained by limited precision

• Bit patterns have no inherent meaning but standards do exist

– two’s complement

– IEEE 754 floating point

• Computer instructions determine “meaning” of the bit patterns

• Performance and accuracy are important so there are many
complexities in real machines (i.e., algorithms and implementation).

• We are (almost!) ready to move on (and implement the processor)

22

Chapter Goals

• Introduce 2’s complement numbers

– Addition and subtraction

– Sketch multiplication, division

• Overview of ALU (arithmetic logic unit)

• Floating point numbers

– Representation

– Arithmetic operations

– MIPS instructions

