
(10 pts) Exercise 5-9

Suppose we want to add a new instruction to MIPS called l_inc

(load and increment). This instruction loads a word from memory
and increments the index register after performing the load. For
instance, the single instruction

l_inc $t0, 0($t1)

would have the same effect as the following:

lw $t0, 0($t1)

addi $t1, $t1, 4

Explain why it is not possible to modify the single-cycle
implementation given in Figure 5.17 to implement this new
instruction without modifying the register file (other changes would

also be necessary, but focus here on the register file).

The remaining exercises all refer to the
multi-cycle implementation.

(5 pts) Exercise 5-11: How many cycles do we need?

IR <= Memory[PC]

A <= Reg[IR[25:21]]

ALUOut <= A + sign-extend(IR[15-0])

MDR = Memory[ALUOut]

Reg[IR[20-16]] = MDR

PC <= PC + 4

In once cycle can do: Register read or write, memory access, ALU

Cycle # Task (for load instruction)

a.) Fill in the cycle number for each task below

b.) What is the total number of cycles needed?

IR <= Memory[PC]

A <= Reg[IR[25-21]]

B <= Reg[IR[20-16]]

ALUOut <= A + sign-extend(IR[15-0])

Memory[ALUOut] = B

PC <= PC + 4

In once cycle can do: Register read or write, memory access, ALU

Cycle # Task (for store instruction)

a.) Fill in the cycle number for each task below

b.) What is the total number of cycles needed?

(5 pts) Exercise 5-12: How many cycles do we need?

IR <= Memory[PC]

PC <= PC + 4

A <= Reg[IR[25-21]]

B <= Reg[IR[20-16]]

ALUOut <= PC + (sign-extend(IR[15-0]) << 2)

if (A ==B) PC = ALUOut

In once cycle can do: Register read or write, memory access, ALU

Cycle # Task (for branch instruction)

a.) Fill in the cycle number for each task below

b.) What is the total number of cycles needed?

(5 pts) Exercise 5-13: How many cycles do we need?

Step 3:

ALUOut <= A + sign-extend(IR[15:0]);

Step 4:

MDR = Memory[ALUOut]

Step 5:

Reg[IR[20-16]] = MDR

(5 pts) Exercise 5-21: Specify control signals needed for a load instruction

Step 3:

ALUOut <= A op B

Step 4:

Reg[IR[15:11]] <= ALUOut;

(3 pts) Exercise 5-22: Specify control signals needed for a R-type instruction

Step 3:

if (A==B) PC <= ALUOut;

(2 pts) Exercise 5-23: Specify control signals needed for a branch instruction

(10 pts) Exercise 5-24: Write out steps 3-4 for a store instruction and show the

control signals needed (as done on previous exercise)

(15 pts) Exercise 5-26

This is like the earlier exercise on stuck-at-0 faults, but now do for the
multi-cycle implementation. For each of the following faults,
describe what instructions will not work and explain why. Consider
these instructions: R-type, lw, sw, beq.

IRWrite=0

PCWrite=0

MemRead=0

MemWrite=0

RegWrite=0

