
1

SI232
Set #15: Multicycle Implementation

(Chapter Five)

2

• Break up the instructions into steps, each step takes a cycle
– balance the amount of work to be done
– restrict each cycle to use only one major functional unit:

• At the end of a cycle
– store values for use in later cycles
– introduce additional “internal” registers

• Each instruction will take _________ cycles to fully execute

Multicycle Approach

3

Simplified Multicycle Datapath

4

Breaking down an instruction

• Steps for an R-type instruction:

– IR <= Memory[PC]

– A <= Reg[IR[25:21]]

– B <= Reg[IR[20:16]]

– ALUOut <= A op B

– Reg[IR[15:11]] <= ALUOut

• What did we forget?

• Above notation is called RTL – Register Transfer Language

5

Example #1 – sub $t0, $s1, $s2

1. IR <= Memory[PC]
2. A <= Reg[IR[25:21]]
3. B <= Reg[IR[20:16]]
4. ALUOut <= A op B
5. Reg[IR[15:11]] <= ALUOut
6. PC <= PC + 4

6

Example #2 – lw $t0, 8($s2)

1. IR <= Memory[PC]
2. A <= Reg[IR[25:21]]
3. ALUOut <= A + sign-extend(IR[15-0])
4. MDR = Memory[ALUOut]
5. Reg[IR[20-16]] = MDR
6. PC <= PC + 4

7

How many cycles do we need?

IR <= Memory[PC]
A <= Reg[IR[25:21]]
B <= Reg[IR[20:16]]
ALUOut <= A op B
Reg[IR[15:11]] <= ALUOut
PC <= PC + 4

In once cycle can do: Register read or write, memory access, ALU

Cycle # Task (for R-type instruction)

a.) Fill in the cycle number for each task below

b.) What is the total number of cycles needed?

Ex 5-11 to 5-14

8

• Goals:
– Pack as much work into each step as possible

– Share steps across different instruction types

• 5 Steps
1. Instruction Fetch
2. Instruction Decode and Register Fetch
3. Execution, Memory Address Computation, or Branch Completion
4. Memory Access or R-type instruction completion
5. Write-back step

Multicycle Implementation

9

IR <= Memory[PC];

PC <= PC + 4;

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

10

• Read registers rs and rt
A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];

• Compute the branch address
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

• Does this depend on the instruction type?

• Could it depend on the instruction type?

Step 2: Instruction Decode and Register Fetch

11

• ALU function depends on instruction type

• 1. ______________________

ALUOut <= A + sign-extend(IR[15:0]);

• 2. ______________________

ALUOut <= A op B;

• 3. ______________________

if (A==B) PC <= ALUOut;

Step 3 (instruction dependent)

12

• Loads and stores access memory

MDR <= Memory[ALUOut];
or

Memory[ALUOut] <= B;

• R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R-type or memory-access)

13

• Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Step 5: Write-back

14

Summary:

15

• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not taken
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?

• In what cycle does the actual addition of $t2 and $t3 takes place?

Questions

16

Control for Multicycle Implementation

Control for “sub $t0, $s1, $s2”
ALUSrcA =
ALUSrcB =

18

Multicycle Control

• Control for single cycle implementation was ________________ ,

based only on the ____________

• Control for multicycle implementation will be ________________,

based on the __________ and current ______________

• We’ll implement this control with state machines

19

Two Weird Things

1. For enable signals (RegWrite, MemRead, etc.) we’ll write down the
signal only if it is true.
For multiplexors (ALUSrcA, IorD, etc.) , we’ll always say what the
value is. (unless it’s a “don’t care”)

2. Some registers are written every cycle, so no write enable control
for them (MDR, ALUOut).
Others have explicit control (register file, IR)

Random (but useful) Refresher:
ALUOp = 00 � ALU adds
ALUOp = 01 � ALU subtracts
ALUOp = 10 � ALU uses function field

Step 1: Instruction Fetch
IR <= Memory[PC]
PC <= PC + 4

Example Control

Step 2: Decode/Register Fetch
A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

Example Control Ex 5-21 to 5-24

22

• How many state
bits will we need?

FSM for Multicycle Control

23

• Implementation:

Finite State Machine for Control

PCWrite

PCWriteCond
IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register�
opcode field

Outputs

Control logic

Inputs

24

Chapter 5 Summary

• If we understand the instructions…
We can build a simple processor!

• If instructions take different amounts of time, multi-cycle is better

• Datapath implemented using:

– Combinational logic for arithmetic

– State holding elements to remember bits

• Control implemented using:

– Combinational logic for single-cycle implementation

– Finite state machine for multi-cycle implementation

