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SI232
Set #15: Multicycle Implementation

(Chapter Five)
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• Break up the instructions into steps, each step takes a cycle
– balance the amount of work to be done
– restrict each cycle to use only one major functional unit:

• At the end of a cycle
– store values for use in later cycles 
– introduce additional “internal” registers

• Each instruction will take _________  cycles to fully execute

Multicycle Approach
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Simplified Multicycle Datapath
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Breaking down an instruction

• Steps for an R-type instruction:

– IR <= Memory[PC]

– A <= Reg[IR[25:21]]

– B <= Reg[IR[20:16]]

– ALUOut <= A op B

– Reg[IR[15:11]] <= ALUOut

• What did we forget?

• Above notation is called RTL – Register Transfer Language
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Example #1 – sub $t0, $s1, $s2

1. IR <= Memory[PC]
2. A <= Reg[IR[25:21]]
3. B <= Reg[IR[20:16]]
4. ALUOut <= A op B
5. Reg[IR[15:11]] <= ALUOut
6. PC <= PC + 4
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Example #2 – lw $t0, 8($s2)

1. IR <= Memory[PC]
2. A <= Reg[IR[25:21]]
3. ALUOut <= A + sign-extend(IR[15-0])
4. MDR = Memory[ALUOut]
5. Reg[IR[20-16]] = MDR
6. PC <= PC + 4
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How many cycles do we need?

IR <= Memory[PC]
A <= Reg[IR[25:21]]
B <= Reg[IR[20:16]]
ALUOut <= A op B
Reg[IR[15:11]] <= ALUOut
PC <= PC + 4

In once cycle can do:  Register read or write, memory access, ALU

Cycle # Task (for R-type instruction)

a.) Fill in the cycle number for each task below

b.) What is the total number of cycles needed?

Ex 5-11 to 5-14
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• Goals:
– Pack as much work into each step as possible

– Share steps across different instruction types

• 5 Steps
1. Instruction Fetch
2. Instruction Decode and Register Fetch
3. Execution, Memory Address Computation, or Branch Completion
4. Memory Access or R-type instruction completion
5. Write-back step

Multicycle Implementation
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IR <= Memory[PC];

PC <= PC + 4;

What is the advantage of updating the PC now?

Step 1:  Instruction Fetch
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• Read registers rs and rt
A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];

• Compute the branch address 
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

• Does this depend on the instruction type?

• Could it depend on the instruction type? 

Step 2:  Instruction Decode and Register Fetch
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• ALU function depends on instruction type

• 1. ______________________

ALUOut <= A + sign-extend(IR[15:0]);

• 2. ______________________

ALUOut <= A op B;

• 3. ______________________

if (A==B) PC <= ALUOut;

Step 3 (instruction dependent)
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• Loads and stores access memory

MDR <= Memory[ALUOut];
or

Memory[ALUOut] <= B;

• R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R-type or memory-access)



13

• Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Step 5: Write-back
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Summary:



15

• How many cycles will it take to execute this code? 

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not taken
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?

• In what cycle does the actual addition of $t2 and $t3 takes place?

Questions
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Control for Multicycle Implementation



Control for “sub $t0, $s1, $s2”
ALUSrcA = 
ALUSrcB = 
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Multicycle Control

• Control for single cycle implementation was ________________  , 

based only on the ____________

• Control for multicycle implementation will be ________________, 

based on the __________  and current ______________

• We’ll implement this control with state machines
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Two Weird Things 

1. For enable signals (RegWrite, MemRead, etc.) we’ll write down the 
signal only if it is true.
For multiplexors (ALUSrcA, IorD, etc.) , we’ll always say what the 
value is.  (unless it’s a “don’t care”)

2. Some registers are written every cycle, so no write enable control 
for them (MDR, ALUOut).
Others have explicit control (register file, IR)

Random (but useful) Refresher:
ALUOp = 00 � ALU adds
ALUOp = 01 � ALU subtracts
ALUOp = 10 � ALU uses function field 

Step 1: Instruction Fetch
IR <= Memory[PC]
PC <= PC + 4

Example Control



Step 2: Decode/Register Fetch
A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

Example Control Ex 5-21 to 5-24

22

• How many state 
bits will we need?

FSM for Multicycle Control
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• Implementation:

Finite State Machine for Control
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Chapter 5 Summary

• If we understand the instructions…
We can build a simple processor!

• If instructions take different amounts of time, multi-cycle is better

• Datapath implemented using:

– Combinational logic for arithmetic

– State holding elements to remember bits

• Control implemented using:

– Combinational logic for single-cycle implementation

– Finite state machine for multi-cycle implementation


