
(5 pts) Exercise 5-1 (Single-cyc impl.)

beq

sw

lw

R-
format

ALUOp
2

ALUOp
1BranchMem-

Write
Mem-
Read

Reg-
Write

Memto-
RegALUSrcRegDstInst.

Fill in the needed control value (0 or 1) for each case

(5 pts) Exercise 5-2 (Single-cyc impl.)

The value fed to the register Write data input comes 
from the data memory

The value fed to the register Write data input 
comes from ALU

Data memory contents designated by the address 
input are replaced by the value on the Write 
Data input

None

Data memory contents designated by the address 
input are put on the Read Data output

None

The PC is replaced by the output of the adder that 
computes the value of branch target

The PC is replaced by the output of the adder that 
computes the value of PC+4

The second ALU operand is sign-extended, lower 16 
bits of the instruction

The second ALU operand comes from the second 
register file output (Read data 2)

The register on the Write register input is written 
with the value on the Write data input

None

The register destination number for the write register 
comes from the rd field (bits 15-11)

The register destination number for the write 
register comes from the rt field (bits 20-26)

Effect when assertedEffect when deassertedSignal Name

Fill in the correct signal name by looking back at the datapath diagram.
Possibilities: ALUSrc, MemtoReg, MemRead, MemWrite, PCSrc, RegDst, RegWrite



(15 pts) Exercise 5-6
A “stuck-at-0” fault is a defect that can occur during manufacturing, where a 
particular signal becomes hardwired to zero.  Considering the single-cycle 
implementation shown in Figure 5.17 on page 307, describe the effect that a 
stuck-at-0 fault would have for each of the following signals.  Which 
instructions, if any, will not work correctly? Explain why.  The first is done for 
you as an example.  Consider these instructions:  R-type, lw, sw, beq

– RegDst = 0.  lw and sw would not work, because the immediate value 
from the instruction couldn’t be provided to the ALU as needed.

– MemRead = 0

– MemWrite = 0

– ALUop1 = 0 

– ALUop0 = 0

– RegWrite = 0

(blank space)



101000X0Xbeq

000100X1Xsw

000011110lw

010001001R-format

ALUOp0ALUOp1BranchMem-
Write

Mem-
Read

Reg-
Write

Memto-
Reg

ALUSrcRegDstInstr

•Consider the jr instruction (jump register), which is described as follows: 

We wish to add this instruction to our single-cycle implementation.  To 
make this happen, 1.) add any necessary hardware (gates, adders, wires, 
etc.) to the single-cycle datapath shown below and 2.) modify the control 
chart below (add a new row and any new signals, if necessary).  
Note:  ‘jr $s0’ states that the next PC value should come from register $s0.  
It is not the same as instructions like ‘j Loop’, whose datapath and control 
is described on page 315 (though reading about that may help with the 
general idea)

(15 pts) Exercise 5-7

(datapath visible in 
different mode)

PAT05F17.eps

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control



101000X0Xbeq

000100X1Xsw

000011110lw

010001001R-format

ALUOp0ALUOp1BranchMem-
Write

Mem-
Read

Reg-
Write

Memto-
Reg

ALUSrcRegDstInstr

•Do the same as previous exercise, but for the lui instruction: 

You can find more info on this instruction in Section 2.9. 
Again, table/figure below for you to modify.  There are multiple ways to 
solve this problem; provide some brief text explaining how your solution 
works.  Make sure that the other instructions continue to work.

(15 pts) Exercise 5-8

(datapath visible in 
different mode)

PAT05F17.eps

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control


