
IC210, Fall 2007, Practice Practicums, September 2007

These practice problems are provided in order to give you more practice. They are intended to
help you be as prepared as possible for the 6-week practicum exam.

You must attempt and turn in Problem #1. It is due on Monday, 24 September 2007. The
others should be used to help hone your skills in preparation for the 6-week Practicum.

TREAT THESE EXERCISES AS ACTUAL PRACTICUMS. DO NOT
READ THE PROBLEM UNTIL YOU ARE READY TO COMPLETE IT.

It is recommended that you attempt to recreate the testing environment as close as possible to
real conditions as possible. In order to get the most benefit from these exercises you should limit
yourself to the following conditions:

• Time: 50 minutes
• Resources: Only your homework, labs, paper-based notes, the official class notes from

the web, and your textbook.
• Collaborating with someone else is not recommended. It will only hurt you in the long

run.

Some tips for Practicum (and general programming) Success

• Start with a pen/pencil and paper. Take the first five to ten minutes of the test period to
read the problem carefully and write down an outline or flowchart highlighting the major
steps and obstacles of the problem.

• Before writing the substantive code, transfer your outline into your program by using
comments. These comments will serve as guideposts as you write your program, and if
nothing else will provide your instructor with some idea as to what your intentions were.

• Focus on one step at a time. Don’t try to do too much at once.
• Note that the sample input is just that, sample input. It is not the only input that your

program should be able to handle. Make sure you carefully read the specified input and
your program can handle all variations of valid input.

• Unless otherwise specified, assume that the user will not purposefully provide invalid
input. If the program specifies integer values, the user will not input floating point
numbers.

• Keep it simple. Don’t try to be too fancy in developing your program. Use the simplest
C++ constructs and don’t outsmart your self.

• Compile often. Don’t go too far before you compile and fix any errors.
• No matter what, make sure your turn in a program that compiles!!

Remember:
• The Practicum is intended to test your knowledge of C++ to this point. While the

problem requires thought and planning, it is a straight forward problem that only requires
the skills you’ve learned to this point.

• You are being graded on function, not style. While you must conform to the style guide,
you do not need to use the most efficient algorithm or best output formatting. Function
over Fancy.

Problem 1:

Write a C++ program called YourLastNamePractice1.cpp (e.g. SmithPractice1.cpp) that first
prints out your name and alphacode.

Your program is to then read a sequence of letters and spaces, from the standard input (the
keyboard, not a file) and output to the screen:

1. The total number of letters
• There can be spaces but they are not letters and will not count towards the total

2. The total number of vowels
Your program should stop reading as soon as it sees a number

For instance, if the user entered:
 This iS an iNpuT samPLE8

the output should look approximately like this:

Problem 2: (easier than a standard practicum)

Write a C++ program called YourLastNamePractice2.cpp (e.g. SmithPractice2.cpp) that first
prints out your name and alphacode.

Your program is to then read in a series of numbers from a file specified by the user and
output to the screen:

1. The total number of elements read
2. The file’s average

Your program should read the entire file.

For instance, if the input file looked like this:

the output should look approximately like this:

Problem 3:

Because of the high price of gasoline, drivers are concerned with the mileage obtained by
their automobiles. One driver has kept track of several tanks of gasoline by recording the
miles driven and gallons used between each fill up.

Write a C++ program called YourLastNamePractice3.cpp (e.g. SmithPractice3.cpp) that first
prints out your name and alphacode.

Your program is then to get the miles driven and gallons used from the user for each tankful.
The program should calculate and display the miles per gallon obtained for each thankful.
After processing all the information, the program should calculate and print the combined
miles per gallon for all tankfuls.

The user will input -1 to signal that he is done with input.

Output should look approximately like this:

Problem 4:

Write a C++ program called YourLastNamePractice4.cpp (e.g. SmithPractice4.cpp) that first
prints out your name and alphacode.

Your program is to then prompt the user for an integer, n, and then read in a series of letters
terminated by a number, and output to the screen:

• The sequence of letters with every nth switched from upper-case to lower- and vice
versa as appropriate.

Your program should stop reading as soon as it sees a number

For instance, if the user’s input was:
4
ThisIsTheSampleInput8

the output should look approximately like this:

Problem 5:

Suppose you can buy a chocolate bar from the vending machine for $1 each. Inside every
chocolate bar is a coupon. You can redeem seven coupons for one bar from the machine.

For example, if you have 20 dollars then you can initially buy 20 chocolate bars. Each has a
coupon, for a total of 20 coupons. You can redeem 14 coupons for two additional chocolate
bars. These two additional chocolate bars give you two more coupons, so you now have
eight coupons. This gives you enough to redeem for on final chocolate bar. As a result you
now have 23 chocolate bars and two leftover coupons.

Write a C++ program called YourLastNamePractice5.cpp (e.g. SmithPractice5.cpp) that first
prints out your name and alphacode.

Your program will then prompt the user for how many dollars to be spent and output to the
screen:

1. The total number of chocolate bars you can collect after spending all the money and
redeeming as many coupons as possible.

2. The number of leftover coupons.

Use a loop to solve this problem. Don’t use clever math tricks to solve it.

For instance, if the user’s input was:
53

the output should look approximately like this:

