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6.034 Notes: Section 11.1

Slide11.1.1
We have been using this simulated bankruptcy data set Bankruptcy Example
to illustrate the different learning algorithms that
operate on continuous data. Recall that R is supposed to 8
be the ratio of earnings to expenses while L is supposed 7 - = *No
to be the number of |ate payments on credit cards over 6 = . a Yes
the past year. We will continue using it in this section 5 -
where we look at a new hypothesis class, linear L4 - . .
separ ators. 31 e "
One key observation is that each hypothesis class leads 2 ¢ " "
to adistinctive way of defining the decision boundary 17 o 2 o
between the two classes. The decision boundary is Y J ¢ ‘
where the class prediction changes from one class to ° D5 1 135 2
another. Let's ook at thisin more detail. K
6.034 - Spring 03 = 1 (E
Slide11.1.2
1-Nearest Neighbor Hypothesis We mentioned that a hypothesis for the 1-nearest

neighbor algorithm can be understood in terms of a
Voronoi partition of the feature space. The cells
illustrated in this figure represent the feature space points
that are closest to one of the training points. Any query in
that cell will have that training point as its nearest
neighbor and the prediction will be the class of that
training point. The decision boundary will be the
boundary between cells defined by points of different
classes, asillustrated by the bold line shown here.

-
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Slide 11.1.3
Similarly,.adecision tree also defines a decision Decision Tree Hypothesis
boundary in the feature space. Note that although both 1-
NN and decision trees agree on all the training points,
they disagree on the precise decision boundary and so 81 * No
will classify some query points differently. Thisisthe # - 2 Yes
essential difference between different learning 61 *® .
algorithms. 5
L4 . n
3 ° ]
2 ° o [ ]
@ 1 ° ° °
es o : . ‘
0.5 1 1.5 2
R
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Slide11.1.4
Linear Hypothesis In this section we will be exploring linear separators

which are characterized by asingle linear decision

boundary in the space. The bankruptcy data can be

8 TNo successfully separated in that manner. But, notice that in

L - u Yes contrast to 1-NN and decision trees, there is no guarantee

6 . that a single linear separator will successfully classify

= any set of training data. The linear separator isavery

L4 simple hypothesis class, not nearly as powerful as either

3 1-NN or decision trees. However, as simple as this class

2 is, in general, there will be many possible linear

11 separators to choose from.

° 0 015 ; 1:5 2 Also, note that, once again, this decision boundary
disagrees with that drawn by the previous algorithms. So,
there will be some data sets where alinear separator is
ideally suited to the data. For example, it turns out that if
the data points are generated by two Gaussian

sose-sprngos -4 - | distributions with different means but the same standard
deviation, then the linear separator is optimal.
Slide 11.1.5
A data set that can be successfully split by alinear .
separator is called, not surprisingly, linearly separable. Linearly Separable

6.034 - Spring 03 o 5§ (E
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Not Linearly Separable

Slide11.1.6

Aswe've mentioned, not all data sets are linearly
separable. Here's one for example. Another classic non-
linearly-separable data set is our old nemesis XOR.

It turns out, although it's not obvious, that the higher the

o . ° dimensionality of the feature space, the more likely that a
® o " linear separator exists. Thiswill turn out to be important
° . & - = later on, so let's just file that fact away.
° ® o
o o ®
® . ¢ o
°
. o o . °
[ o
° °
® ° o®
° [ ]
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Slide11.1.7
When faced with a non-linearly-separable data set, we .
have two options. One is to use a more complex Not Linearly Separable
hypothesis class, such as shown here.
[ ]
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Not Linearly Separable

6.034 - Spring 03 « 8

¢

Slide11.1.8

Or, keep the simple linear separator and accept some
errors. Thisisthe classic bias/variance tradeoff. Use a
more complex hypothesis with greater variance or a
simpler hypothesis with greater bias. Which is more
appropriate depends on the underlying properties of the
data, including the amount of noise. We can use our old
friend cross-validation to make the choice if we don't
have much understanding of the data.
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Slide11.1.9

S0, let'slook at the details of linear classifiers. First, we Linear Hypothesis Class

need to understand how to represent a particul ar

hypothesis, that is, the equation of alinear separator. We e Equation of a hyperplane in the feature space

will beillustrating everything in two dimensions but all W-x+b=0
the equations hold for an arbitrary number of dimensions. n
The equation of alinear separator in an n-dimensional Z W;X; + b=0
feature spaceis (surprise!) alinear equation which is 7=
determined by n+1 values, the components of an n-
dimensional coefficient vector w and a scalar value b.
These n+1 values are what will be learned from the data.

The x will be some point in the feature space.

ew, b are to be learned

We will be using dot product notation for compactness
and to highlight the geometric interpretation of this
equation (more on thisin aminute). Recall that the dot
product is simply the sum of the componentwise products
of the vector components, as shown here.

6.034 - Spring 03 « 9

Slide 11.1.10
Linear Hypothesis Class In two dimensions, we can see the geometric
interpretation of w and b. The vector w is perpendicular
e Equation of a hyperplane in the feature space to the linear separator; such avector is known asthe
_ X normal vector. Often we say “the vector normal to the
wW-x+b=0 N surface”. The scalar b, which we will call the offset, is
Z W;Xx; + b=0 w=[w; W,] proportional to the perpendicular distance from the origin
j=1 to the linear separator. The constant of proportionality is
By the negative of the reciprocal of the magnitude of the
ew, b are to be learned normal vector. We'll examine thisin more detail soon.
/JM By the way, the choice of the letter "w" istraditiona and
X, meant to suggest "weights', we'll see why when we look
at neural nets. The choice of "b" is meant to suggest
"bias" - which isthe third different connotation of this
word in machine learning (the bias of a hypothesis class,
bias vs variance, bias of a separator). They are al
fundamentally related; they all refer to a difference from

sox-sengo3 =20 - | aneutral value. To keep the confusion down to adull
roar, we won't call b a bias term but are telling you about

this so you won't be surprised if you see it elsewhere.

Slide11.1.11

Sometimes we will use the following trick to simplify the Linear Hypothesis Class
equations. We'l treat the offset as the 0t component of

the weight vector w and we'll augment the data vector x e Equation of a hyperplane in the feature space
with a 0th component that will always be equal to 1. Then w-x+-b=0 \ Xy

we can write alinear equation as a dot product. When we n

do this, we will indicate it by using an overbar over the Z w;x; +b=0 w=[w; w,]
Vectors. j=1

ew, b are to be learned /",’%

X
e A useful trick: let x,=1 and wy=b & %
w-x=0
n
> wx; =0
j=0
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Slide 11.1.12
Hyperplane: Geometry First aword on terminology: the equations we will be
writing apply to linear separatorsin n dimensions. In two
dimensions, such alinear separator isrefered to asa
\ X, onit "line". In three dimensions, it is called a"plane". These
/ Hf are familiar words. What do we call it in higher

W dimensions? The usual terminology is hyperplane. |
know that sounds like some type of fast aircraft, but that's
the accepted name.

offset - Let's look at the geometry of a hyperplane a bit more
closely. We saw earlier that the offset b in the linear
AN separator equation is proportional to the perpendicular
1

distance from the origin to the linear separator and that
the constant of proportionality is the reciprocal of the
magnitude of the w vector (negated). Basically, we can
multiply both sides of the equation by any number
without affecting the equality. So, there are an infinite set
sose-spingo3 + 12 - | Of equations all of which represent the same separator.

If we divide the equation through by the magnitude of w
we end up with the situation shown in the figure. The normal vector is now unit length (denoted by the hat on the w) and the offset b is
now equal to the perpendicular distance from the origin (negated).

Slide11.1.13

It's crucial to understand that the quantity w-hat dot x Hyperplane: Geometry
plus b is the perpendicular distance of point x to the

linear separator.

If you recall, the geometric interpretation of adot product W-X+b e
a. bisthat it isanumber which is the magnitude of a signed perpendicular
times the magnitude of b times the cosine of the angle distance of point x to
between the vectors. If one of the vectors, say a, has unit hyperplane.
magnitude then what we have is precisely the magnitude /

of the projection of the b vector onto the direction R X
defined by a. Thus w-hat dot x is the distance from x to 4

the origin measured perpendicular to the hyperplane. X

Looking at the right triangle defined by the w-hat and the
x vector, both emanating from the origin, we see that the
projection of x onto w-hat is the length of the base of the
triangle, where x is the hypotenuse and the base angle is reeall 8- = ||a||||b|| cos @
theta.

s

6.034 - Spring 03 « 13 (E

Now, if we subtract out the perpendicular distance to the
origin we get the distance of x from the hyperplane (rather than from the origin). Note that when thetais 90 degrees (that is, w and x are
perpendicular), the cosineis equal to 0 and the distance is precisely b as we expect.
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W-X+b

Hyperplane: Geometry

X, perp
\ / distance is
signed perpendicular positive
distance of point x to W
hyperplane.
-b
perp R X
distance is Wox
negative (7
)\ Xl
perp
distance is
zero

recall: a-b= ||a||||b|| cos 0

6.034 - Spring 03 « 14

¢

Slide11.1.15

We can now exploit the sign of this distance to define a

linear classifier, one whose decision boundary isa

hyperplane. Instead of using 0 and 1 as the class |abels

Slide11.1.14

This distance measure from the hyperplaneis signed. It is
zero for points on the hyperplane, it is positive for points
in the side of the space towards which the normal vector
points, and negative for points on the other side. Notice
that if you multiply the normal vector w and the offset b
by -1, you get an equation for the same hyperplane but
you switch which side of the hyperplane has positive
distances.

Linear Classifier

_ ; _ : h(x) = sign(w - x + b) = sign(w - X)
(which was an arbitrary choice anyway) we use the sign X,
of the distance, either +1 or -1 asthe labels (that is the ottouts +1 or < \
values of they;). P w
X
N X
6.034 - Spring 03 » 15 (E
Slide 11.1.16
Linear Classifier A variant of the signed distance of atraining point to a
hyperplane is the mar gin of the point. The margin
y = +1 (gamma) is the product of the actual signed distance for
th epoint and the desired sign of the distance, y;. If th
Margin: L Y » o e Yi- T
; _ ‘ , agree (the point is correctly classified), then the marginis
vi=y' (W-x'+b)=y'w. X' w positive; if they disagree (the classification isin error),
proportional to x€ then the margin is negative.
perpendicular distance of e
point x' to hyperplane. ;
X
Vi
v, > 0 : point is correctly \ N\ X
classified (sign of distance = y/)
=

y, < 0 : point is incorrectly
classified (sign of distance = y')

6.034 - Spring 03 « 16
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6.034 Notes: Section 11.2

Slide11.2.1
So far we've talked about how to represent alinear

Perceptron Algorithm
Rosenblatt, 1956

hypothesis but not how to find one. In thisdideis the
perceptron algorithm, developed by Rosenblatt in the
mid 50's. Thisis not exactly the origina form of the
algorithm but it is equivalent and it will help us later to
seeitinthisform.

e Pick
[0 ..

Thisisagreedy, "mistake driven" algorithm not unlike
the Boolean function learning agorithms we saw
earlier. We will be using the extended form of the
weight and data-point vectorsin this algorithm. The

* Repeat until all points correctly classified
* Repeat for each point

initial weight vector (including b), e.qg.
0]

y’Wi’ ) for point i
- If margin > 0, point is correctly
classified

- Calculate margin (

- Else change weights to increase margin;
change in weight proportional to y’x’

extended weight vector iswhat we are trying to learn.

The first step isto start with an initial value of the

weight vector, usualy all zeros. Then we repeat the
inner loop until al the points are correctly classified
using the current weight vector. The inner loop isto
consider each point. If the point's margin is positive

6.034 - Spring 03 « 1

¢

then it is correctly classified and we do nothing.
Otherwise, if it is negative or zero, we have a mistake and we want to
ultimately becomes positive).

change the weights so as to increase the margin (so that it

Thetrick is how to change the weights. It turns out that using a value proportiona to yx is the right thing. We'll see why, formally,

later. For now, let's convince ourselves that it makes sense.

Perceptron Algorithm
Rosenblatt, 1956

Slide11.2.2
Consider the case in which y is positive; the negative case
isanalogous. If the jth component of x is positive then we

[0 .. O]
* Repeat until all points correctly classified
* Repeat for each point
ini' ) for point i
- If margin > 0, point is correctly
classified

- Calculate margin (

- Else change weights to increase margin;
change in weight proportional to y’x’

* Pick initial weight vector (including b), e.qg.

will increase the corresponding component of w. Note
that the resulting effect on the margin is positive. If the
jth component of x is negative then we will decrease the
corresponding component of w, and the resulting effect
onthe marginis also positive.

o Note that, if y!
if x;/ > O then w; increased (increases margin)
if x{/ < O then w, decreased (increases margin)

e And, similarly foryi = -1

6.034 - Spring 03 = 2
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So, each change of w increases the margin on a particular
point. However, the changes for the different points
interfere with each other, that is, different points might
change the weights in opposing directions. So, it will not
be the case that one pass through the points will produce
acorrect weight vector. In general, we will have to go
around multiple times.

The remarkable fact is that the algorithm is guaranteed to
terminate with the weights for a separating hyperplane as
long asthe datais linearly separable. The proof of this
fact is beyond our scope.

Notice that if the datais not separable, then this algorithm
isaninfinite loop. It turns out that it isagood ideato
keep track of the best separator you've seen so far (the
one that makes the fewest mistakes) and after you get
tired of going around the loop, return that one. This
algorithm even has a name (the pocket algorithm: see, it
keeps the best answer in its pocket...).

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts I nstitute of Technology. All rights reserved

Perceptron Algorithm
Rosenblatt, 1956

* Pick initial weight vector (including b), e.g.
[0 ..

* Repeat until all points correctly classified

0]

* Repeat for each point

- Calculate margin (

- If margin > 0, point is correctly
classified

—Else change weights to increase margin;
change in weight proportional to y’i'

inii ) for point i

Note that, if yl = 1
if X/ > 0 then w;, increased (increases margin)
if ! < O then w; decreased (increases margin)
And, similarly fory' = -1
e Guaranteed to find separating hyperplane if one exists
e Otherwise, data are not linearly separable, loops

forever.
.034 - Spring 03 » 3 4

Perceptron Algorithm
Bankruptcy Data

raten = 0.1

L Initial Guess:

w=[0.0 0.0 0.0]

Final Answer:
w=[-2.2 0.94 0.4]

6.034 - Spring 03 = 4

¢

Slide11.2.5

Let'srevisit the issue of why we picked yx to increment w
in the perceptron algorithm. It might have seemed
arbitrary but it's actually an instance of a general strategy
called gradient ascent for finding the input(s) that
maximize afunction's output (or gradient descent when
we are minimizing).

The strategy in one input dimension is shown here. We
guess an initial value of the input. We calculate the slope
of the function at that input value and we take a step that
is proportional to the slope. Note that the sign of the
slope will tell us whether an increase of the input variable
will increase or decrease the value of the output. The
magnitude of the slope will tell us how fast the function
is changing at that input value. The slopeisbasically a
linear approximation of the function whichisvalid "near"
the chosen input value. Since the approximation is only
valid locally, we want to take a small step (determined by
the rate constant eta) and repeat.

Slide11.2.4

This shows atrace of the perceptron algorithm on the
bankruptcy data. Here it took 49 iterations through the
data (the outer loop) for the algorithm to stop. The
hypothesis at the end of each loop is shown here. Recall
that the first element of the weight vector is actualy the
offset. So, the normal vector to the separating hyperplane
is[0.94 0.4] and the offset is-2.2 (recall that is
proportional to the negative perpendicular distance from
origin to the line).

Note that the unitsin the horizontal and vertical
directionsin this graph are not equal (the tick marks
along the axes indicate unit distances). We did this since
the range of the data on each axisis so different.

One usually picks some small "rate" constant to scale the
change to w. It turns out that for this algorithm the value
of the rate constant does not matter. We have used 0.1 in
our examples, but 1 also works well.

e Why pick y'X' as increment to weights?

e To maximize scalar function of one variable f(w)
e Pick initial w
e Change w to w + n df/dw (n > 0, small)
e until f stops changing (df/dw = 0)

Gradient Ascent

‘ df/dw= 0
local extremum

f

df/dw > 0
slope

n_d?l (;VV
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We want to stop when the output change is zero (or very small). This should correspond to a point where the slope is zero, which
should be aloca extremum of the function. This strategy will not guarantee finding the global maximal value, only alocal one.

Gradient Ascent/Descent
e To maximize f(w) of

v.F :{ of
e Pick initial w

eChangewtow + nV,f (n>0,small)
e until f stops changing (V,f =~ 0)

is globally convex.

ow, " ow,

¢ Finds local maximum; global maximum if function

6.034 - Spring 03 « 6

Slide11.2.6
The generalization of this strategy to multiple input
variablesis based on the generalization of the notion of
} slope, which isthe gradient of the function. The gradient
isthe vector of first (partial) derivatives of the function
with respect to each of the input variables. The gradient
vector pointsin the direction of steepest increase of the
function output. So, we take a small step in that direction,
recompute the gradient and repeat until the output stops
changing. Once again, thiswill only find usalocal
maximum of the function, in general. However, if the
function is globally convex, then it will find the global
optimum.

Slide11.2.7

In general, the choice of the rate constant (eta), which
determinesthe step size, isfairly critical. Unfortunately,
no single value is appropriate for al functions. If one
chooses avery conservative small rate, it can take along
time to find aminimum, if one takes too big stepsthereis
no guarantee that the algorithm will even convergeto a
minimum; it can oscillate as shown in the figure here
where the sign of the slope changes and causes a back-
and-forth search.

In more sophisticated search algorithms one does a
search along the specified direction looking for a value of
the step size that guarantees an increase in the function
value.

Gradient Ascent/Descent

e To maximize f(w) V.f = {i,,i}
e Pick initial w ow, ow,
eChangewtow + n V,f (n >0, small)

e until f stops changing (V,f = 0)

¢ Finds local maximum; global maximum if function

is globally convex

e Rate (1) has to be chosenfcarefully.
¢ Too small -

slow convergence
¢ Too big -
oscillation

w

6.034 - Spring 03 7 (E
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Perceptron Training
via Gradient Descent

fow)= Y y'wx

i misclassified

V.f =

w

Zyiii

i misclassified

e Maximize sum of margins of misclassified points

6.034 -

Slide 11.2.8

Now we can see that our choice of increment in the
perceptron algorithm is related to the gradient of the sum
of the margins for the misclassified points.

Spring 03 « 8

¢

Slide 11.2.9

If we actually want to maximize this sum via gradient
descent we should sum all the corrections for every
misclassified point using a single w vector and then apply
that correction to get a new weight vector. We can then
repeat the process until convergence. Thisis normally
called an off-line algorithm in that it assumes access to
all the input points.

What we actually did was a bit different, we modified w
based on each point as we went through the inner loop.
Thisis called an on-line algorithm because, in principle,
if the points were arriving over acommunication link, we
would make our update to the weights based on each
arrival and we could discard the points after using them,
counting on more arriving later.

Another way of thinking about the relationship of these
algorithmsis that the on-line version isusing a
(randomized) approximation to the gradient at each point.
It is randomized in the sense that rather than taking a step

Perceptron Training
via Gradient Descent

e Maximize sum of margins of misclassified points

fow)= > y'wx

i misclassified

Zyiii

i misclassified

Vof =

¢ Off-line training: Compute gradient as sum over all
training points.

e On-line training: Approximate gradient by one of
the terms in the sum: y'X'

6.034 - Spring 03 9

based on the true gradient, we take a step based on an estimate of the gradient based on a randomly drawn example point. In fact, the
on-line version is sometimes called " stochastic (randomized) gradient ascent” for this reason. In some cases, this randomnessis good

because it can get us out of shallow local minima.
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Perceptron Algorithm
Bankruptcy Data
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Initial Guess:
w=[-1.01.01.0]

Final Answer:
W=

[-1.7 0.81 0.3]
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Slide11.2.11

Recall that the perceptron agorithm starts with an initial
guess for the weights and then adds in scaled versions of
the misclassified training points to get the final weights.
In this particular set of 10 iterations, the points indicated
on the left are misclassified some number of times each.
For example, the leftmost negative point is misclassified
in each iteration except the last one. If we sum up the
coordinates of each of these points, scaled by how many
times each is misclassified and by the rate constant we
get the total change in the weight vector.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts I nstitute of Technology. All rights reserved

Slide 11.2.10

Here's another look at the perceptron algorithm on the
bankruptcy datawith a different initial starting guess of
the weights. Y ou can see the different separator
hypotheses that it goes through. Note that it converges to
adifferent set of weights from our previous example.
However, recall that one can scal e these weights and get
the same separator. In fact these numbers are
approximately 0.8 of the ones we got before, but only
approximately; thisisadlightly different separator.

The perceptron algorithm can be described as a gradient
ascent algorithm, but its error criterion is slightly unusual
in that there are many separators that all have zero error.

Perceptron Algorithm
Bankruptcy Data

a; is count of
mistakes on point
i during training

Dual Form
Assume initial weights are 0; rate=n>0
5% (1.0 1.7 1.0) ay.X,
3x(1.0 1.1 3.0) aysX,
-9x (1.0 0.2 3.0) a,yX,
-1x (1.0 0.7 2.0) &y, %,
-4 % (1.0 0.5 4.0) P
-1x (1.0 1.7 1.0) @YXy
(-7.0-1.9-7.0) x 0.1 m
= W = ay.X;
(-0.7 -0.19 -0.7) '7'; X

6.034 - Spring 03 » 12 (E

sx(1.71) | | 3x(1.13) |
e eme e gem 'oten = 0.1 S
5x(1.01.7 1.0) |
3x(1.01.1 3.0)
-9 x (1.00.2 3.0)
-1x(1.00.7 2.0) |
-4 x(1.00.5 4.0)
-1x(1.01.7 1.0) |
(-7.0-1.9-7.0) E
x 0.1=
. (-0.7 -0.19 -0.7)
| -9x(p.2 3) ax(.5 4) Initial Guess:
w=[-1.0 1.0 1.0]
. 1x(1.7 1
[x0.72)| [x171)] Final Answer:
w=[-1.7 0.81 0.3]
6.034 - Spring 03 » 11 (E
Slide11.2.12

This analysis leads us to a somewhat different view of the
perceptron agorithm, usually called the dual form of the
agorithm. Call the count of how many timespointi is
misclassified, alpha;. Then, assuming the weight vector is
initalized to Os, we can write the final weight vector in
terms of these counts and the input data (as well asthe
rate constant).
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Slide 11.2.13

Since the rate constant does not change the separator we
can simply assume that it is 1 and ignore it. Now, we can
substitute this form of the weightsin the classifier and we
get the classifier at the bottom of the slide, which hasthe
interesting property that the data points only appear in
dot-products with other data points. Thiswill turn out to
be extremely important later; file this one away.

Dual Form
Assume initial weights are 0;  rate=n>0
5x%(1.01.7 1.0) % & -
3x(1.01.1 3.0) @y % a; is count of

-9 x (1.0 0.2 3.0) ay %t !'nistz_akes on point
-1x(1.0 0.7 2.0) ay'% i during training
-4 x (1.0 0.5 4.0) Ay
-1x(1.01.7 1.0) P e
m
:(_7'0 LO-70x 01 g ny.ay X, n just scales
(-0.7 -0.19 -0.7) =1 answer, set to 1

h(x) = sign(w - ) = sign(Q_ ay'x’ - X)
=1

6.034 - Spring 03 « 13 4

Perceptron Training
Dual Form

e a=0
e Repeat until all points correctly classified
* Repeat for each point i
- Calculate margin ia,-y’i’ 5!

Jj=1

- Else increment o,
e Ret m .
eturn W - Za,ijiJ

J=1

bound

-If margin > 0, point is correctly classified

o If data is not linearly separable, the o; grow without

6.034 - Spring 03 = 14

Slide 11.2.14

We can now restate the perceptron algorithmin this
interesting way. The separator is described as a weighted
sum of the input points, with alpha; the weight for point i.
Initialy, set al of the alphasto zero, so the separator has
all zero's as coefficients.

Then, for each point, compute its margin with respect to
the current separator. If the margin is positive, the point
is classified correctly, so do nothing. If the marginis
negative, add that point into the weights of the separator.
We can do that simply by incrementing the associated
apha.

Finally, when all of the points are classified correctly, we
return the weighted sum of the inputs as the coefficients
fo the separator. Note that if the datais not linearly
separable, then the algorithm will loop forever, the alphas
growing without bound.

Y ou should convince yourself that this dual formis

equivalent to the original. Once again, you may be wondering...so what? I'll say again; file this away. It has surprising conseguences.

6.034 Notes: Section 11.3
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Slide11.3.1 . ,
Thereis no easy way to characterize which particular Which Separator?
separator the perceptron algorithm will end up with. In
general, there can be many separators for a data set.
Even in the tightly constrained bankruptcy data set, we
saw two runs of the algorithm with different starting X
points ended up with dlightly different hypotheses. Is
there any reason to prefer one separator over the others? .
Slide11.3.2
Which Separator? Yes. On_e natural qhoicv_e isto pick th_e separat_or tha_t has
the maximal margin to its closest points on either side.
Maximize the marain to closest points Thisisthe separator that seems most conservative. Any
g P other separator will be "closer” to one class than to the
other. The one shown in this figure, for example, seems
s likeit's closer to the black points on the lower Ieft than to
the red ones.
o
6.034 - smms—-z—(é
Slide11.3.3
This one seems safer, no? Which Separator?
Another way to motivate the choice of the maximal
margin separator is to see that it reduces the "variance" of Maximize the margin to closest points

the hypothesis class. Recall that a hypothesis has large
variance if small changesin the dataresult in avery
different hypothesis. With amaximal margin separator,
we can wiggle the data quite a bit without affecting the
separator. Placing the separator very close to positive or
negative pointsisakind of overfitting; it makes your
hypothesis very dependent on details of the input data.

Let's seeif we can figure out how to find the separator
with maximal margin as suggested by this picture.

5.034 - Spring 03 + 3
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Margin of a point

i i i X
Y =y'(w-x'+b) gl
e proportional to perpendicular w

distance of point x' to hyperplane
Vi

Slide11.34

First we have to define what we are trying to optimize.
Clearly we want to use our old definition of margin, but
well have to deal with a couple of issues first. Note that
we're using the w, b notation instead of w bar, because
we will end up giving b special treatment in the future.

X
Vi
N X
Slide 11.3.5
Remember that any scaling of w and b defines the same Margin of a point
ling; but it will result in different values of gamma. To
get the actual geometric distance from the point to the
separator (called the geometric margin), we need to . ; i X,
divide gamma through by the magnitude of w. 7y =y'(w-x"+b) N
e proportional to perpendicular w
distance of point x' to hyperplane k

e geometric margin is ;//HWH

Y

Vi

N X

6.034 - Spring 03 = 5

Margin
¥ =y'(w-x' +b)

e Scaling w changes value of margin but not actual
distances to separator (geometric margin)

¢ Pick the margin to closest positive and negative
points to be 1

+1(w-x'+b)=1

—-L(w-x>+b)=1

6.034 - Spring 03 « 6

Slide11.3.6

The next issue is that the we have defined the margin for
apoint relative to a separator but we don't want to just
maximize the margin of some particular single point. We
want to focus on one point on each side of the separator,
each of which is closest to the separator. And we want to
place the separator so that theit is as far from these two
points as possible. Then we will have the maximal
margin between the two classes.

Since we have a degree of freedom in the magnitude of w
we're going to just define the margin for each of these
pointsto be 1. (You can think of this 1 as having arbitrary
units given by the magnitude of w.)

Y ou might be worried that we can't possibly know which
will be the two closest points until we know what the
separator is. It's areasonable worry, and we'll sort it out
in acouple of dides.
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Slide11.3.7

Having chosen these margins, we can add the two
equations to get that the projection of the weight vector
on the difference between the two chosen data points has
magnitude 2. Thisis obvious from the setup, but it's nice
to seeit follows.

Then, we divide through by the magnitude of the weight
vector and we have a simple expression for the margin,
simply 2 over the magnitude of w.

Margin

¢ Pick the margin to closest positive and negative
points to be 1

+1(w-x!+b)=1
—1(w-x*+b)=1
e Combining these
w-(x!-x?)=2

¢ Dividing by length of w gives perpendicular
distance between lines (2 x geometric margin)

Picking w to Maximize Margin

¢ Pick w to maximize geometric margin
2

vl
e or, equivalently, minimize

pwi = vw - w

e or, equivalently, minimize

6.034 - Spring 03 « 8 (E

i . ()(1 _ xz) = L
|wi vl
6.034 - Spring 03 o 7 4
Slide 11.3.8

So, we want to pick w to maximize the geometric margin,
that is, to maximize 2 over the magnitude of w. To
maximize this expression, we want to minimize the
magnitude of w. If we minimize 1/2 the magnitude
sguared that is completely equivalent in effect but
simpler analytically.

Of course, thisis not enough, since we could simply pick
w = 0 which would be completely useless.

Slide11.3.9

We'd like to find the w that specifies the maximum
margin separator. To be a separator, w needs to classify
the points correctly. So, we'll maximize the margin,
subject to a set of constraints that require the points to be
classified correctly. We will require each point in the
training set to have a margin greater than or equal to 1.
Requiring the margins to be positive will ensure that they
are classified correctly. Requiring them to be greater than
or equal to 1 will ensure that the margin of the closest
points wil be greater than or equal to 1. The fact that we
are minimizing the magnitude of w will force the margins
to be as small as possible, so that in fact the margins of
the closest points will equal 1.

Picking w to Maximize Margin

e Pick w to maximize geometric margin
2

[w]
e or, equivalently, minimize

1 1

1
5”‘"”2 =yWww= ngi

e while classifying points correctly
yi(w-x' +b)>1
e or, equivalently,

y'(w-x'+b)-1>0

6.034 - Spring 03 9
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Constrained Optimization

m"‘jl'1%||w||2 subject to y'(w-x' +b)-1>0,

v

6.034 -

Spring 03 « 10

Slide11.3.11

The standard approach to solving this type of problem is
to convert it to an unconstrained optimization problem by
incorporating the constraints as additional termsin the
function to be minimized. Each of the constraintsis
multiplied by aweighting term alpha;. Think of these

terms as penalty terms that will penalize values of w that
do not satisfy the constraints.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts I nstitute of Technology. All rights reserved

Slide 11.3.10

So, to summarize, we have defined a constrained
optimization problem as shown here. It involves
minimizing a quadratic function subject to a set of linear
congtraints. These kinds of optimization problems are
very well studied. When the function to be minimized is
linear, it is a particularly easy case that can be solved by a
"linear programming” algorithm. In our case, it's a bit
more complicated.

Constrained Optimization
m“jn%||w||2 subjectto y'(w-x' +b)-1>0, Vv,

Convert to unconstrained optimization by incorporating
the constraints as an additional term

mvjn[%”w”z _ S ay'(wx' +b) _1]] 220,

6.034 - Spring 03 » 11 (E

Constrained Optimization

the constraints as an additional term

To minimize expression:
minimize first (original) term, and
maximize second (constraint) term

mvjn%”WHZ subject to y'(w-x' +b)-1>0,

v,

6.034 -

Convert to unconstrained optimization by incorporating

(1 i i
mJn[EHWHZ - Yalw-x +b)—1]] @20,

since o; > 0, encourages constraints to be satisfied
but we want least “distortion” of original term...

Spring 03 » 12 (E

Slide 11.3.12

To minimize the combined expression we want to
minimize the first term (the magnitude of the weight
vector sguared) but we want to maximize the constraint
term sinceiit is negated. Since alpha; > 0, making the
congtraint terms bigger encourages them to be satisfied
(we want the margins to be bigger than 1).

However, the bigger the constraint term, the farther we
move from the original minimal value of w. In general
we want to minimize this "distortion” of the origina
problem. We want to introduce just enough distortion to
satisfy the constraints. We'll look at thisin more detail
momentarily.

file:///CJ/Documents¥%20and%20Settings/ T/M y%20Documents...eaching/6.034/04/| essons/ Chapter 1 1/linear-handout.html (16 of 33)4/23/2004 6:37:00 AM



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts I nstitute of Technology. All rights reserved

Slide 11.3.13
This method we have begun to outline here is called the Constrained Optimization
method of L agrange multiplier s and the alpha; are the
individual Lagrange multipliers. min%||w||2 subject to y'(w-x +b)-1>0, V,
Convert to unconstrained optimization by incorporating
the constraints as an additional term
mir Sw’ - Y afy'(w-x' +b)-1]] @ 20,,
w |2 F
o ) | Lagrange multipliers
To minimize expression:
minimize first (original) term, and
maximize second (constraint) term
since o, > 0, encourages constraints to be satisfied
but we want least “distortion” of original term...
Method of Lagrange multipliers |
6.034 - Spring 03 « 13 4
6.034 Notes. Section 11.4
Slide11.4.1

The details of solving a Lagrange multiplier problem Maximizing the Margin

are alittle bit complicated. We've described the process 1 _ _
. . . s i . . L p) = = 2 _ [ i L py_ 1]
in quite a bit of detail in an optiona section of this (w,b) = 2 [w] Z“i y'(w-x' +b)
chapter. But we are going to go through the derivation '
at a somewhat abstract level here, becauseit gives us
some insights and intuitions about the resulting
solution.

We have an expression, L(w,b), that also involves
parameters alpha. If we knew what the values of alpha
should be, we could just fix them, minimize L with
respect to w and b, and be done. The big problem is that
we don't know what the alphas are supposed to be.

6.034 - Spring 03 1
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Maximizing the Margin

Lw, b) = S|w[* - L arly'(w - x' + b)-1]

Minimized when: |W = Za’;yixi Za,.y" =0
) 1

6.034 - Spring 03 « 2

Slide11.4.2

So, we're going to start by imagining that we know what
we want the alphas to be. We'll hold them constant for
now, and figure out what values of w and b would
optimize L for those fixed alphas. We can do this by
taking the partial derivatives of L with respect tow and b
and setting them to zero, getting two constraints. We find
that the best value of w, w* is aweighted sum of the
input points (in the same form as the dual perception);
and we get an extra constraint that the sum of the alphas
for the positive points has to equal the sum of the alphas
for the negative points.

Slide11.4.3
We can substitute this expression for the optimal w's back
into our original expression for L, getting L asafunction

of alpha. Now we have an expression involving only L(w,b) = 1”‘””2 B Z“'[yl(w X' +b) - 1]
' & 2 7 1

aphas, which we don't know, and x's and y's, which we
do know. This function is known as the dual Lagrangian.
One of the most important things about it, from our
perspective, is that the feature vectors only appear in dot
products with other feature vectors. We'll come back to
this point later on.

Minimized when: W = > ay'x'| > ay' =0

Substituting w* into L yields dual Lagrangian:

Maximizing the Margin

m 1 m m
L(o) = Zai -5 ZZ Yy XX,

i=1 i1 k=1 \

\

Only dot
products of the
feature vectors

appear

6.034 - Spring 03 3

Dual Lagrangian

maxL(a) subjectto Y ay'=0 and «, >0, Vi

6.034 - Spring 03 « 4

Slide11.4.4

Now, it'stimeto pick the best values for the alphas. We
do so (for reasons that you'll haveto learn in amath
class) by choosing the alpha values that maximize this
expression. We will retain the constraints that the sum of
the alpha values for positive pointsis equal to the sum of
the alpha values for negative points, and that the alphas
must be positive.

Note that we will be solving for m alphas. We started
with n+1 (the number of features, plus one) variablesin
the original Lagrangian and now we have m (the number
of data points) variablesin the dual Lagrangian. For the
low-dimensional examples we have been dealing with
this seems like a horrible tradeoff. We will see in the next
lecture that this can be a very good tradeoff in some
circumstances.

We have two constraints, but they are much simpler. One
constraint is simply that the alphas be non-negative---this

is required because our original constraints were >=

inequalities. The constraint on the alphas comes from the setting to zero the derivative of the Lagrangian with respect to the offset b.
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6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts I nstitute of Technology. All rights reserved

This problem is not trivia to solvein general; we'll talk more about this later. For now, let us assume that we can solve it and get the

optimal values of alphas.

Slide11.4.5

In the solution, most of the alphas will be zero,
corresponding to data points that do not provide binding
constraints on the choice of the weights. A few of the
data points will have their aphas be nonzero; they will all
satisfy their constraints with equality (that is, their margin
isequal to 1). These are called support vectors and they
are the ones used to define the maximum margin
separator. Y ou could remove all the other data points and
till get the same separator. Because the sparsity of
support vectorsis so important, this learning method is
called asupport vector machine, or SVM.

Dual Lagrangian

maxL(a) subjectto Y ay'=0 and a, >0, Vi
¢ i

In general, since o; >= 0, either
o; = 0: constraint is satisfied with
no distortion at optimum w
or
o, > 0: constraint is satisfied with
equality (in this case x' is known as a
support vector)

6.034 - Spring 03 = 5

Dual Lagrangian

In general, since o; >= 0, either *
o, = 0: constraint is satisfied with no
distortion at optimum w .

or .
o; > 0: constraint is satisfied with equalit%
*

(xi is known as a support vector) Y
a =

w =>ay'x
i

maxL(a) subjectto Y ay'=0 and «, >0, Vi

Slide11.4.6

Given the optimal a phas, we can compute the weights.
but thistime, the coefficients in the sum are the Lagrange
multipliers, the alphas, which are mostly zero. This
means that the equation of the maximum margin
separator depends only on the handful of data points that
are closest to it. It makes sense that all the rest of the
points would be irrelevant.

0 | Wecan usethe fact that at the support vectors the
congtraints hold with equality to solve for the value of the
offset b. Each such constraint can be used to solve for
this scalar.

6.034 - Spring 03 « 6
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Slide 11.4.7

We have not discussed actual algorithms for finding the
maxima of the dual Lagrangian. It turns out that the
optimization problem we defined is arelatively simple
form of the general class of quadratic programming
problems, which are known to (a) have a unique
maximum and (b) can be found using existing algorithms.
A number of variations on these algorithms exist but they
are beyond our scope.

Dual Lagrangian
maxL(a) subjectto Y ay'=0 and @, >0,Vi
¢ i
In general, since o; >= 0, either %

o, = 0: constraint is satisfied with no
distortion at optimum w .,

or *
a; > 0: constraint is satisfied with equalit%
(xi is known as a support vector) s

e Has a unique maximum vector a=0

e Can be found using quadratic programming
or gradient ascent

a=0

w =>ay'x
i

6.034 - Spring 03 « 7

SVM (Classifier

follows:
k . .
h(u) = sign[z ay'x -u+ b]
i=1

e The sum is over k support vectors

e Given unknown vector u, predict class (1 or -1) as

6.034 - Spring 03 « 8 q

Slide11.4.8

With the values of the optimal alpha'sand b in hand, and

the knowledge of how w is defined, we now have a
classifier that we can use on unknown points. Crucialy,
notice that once again, the only thing we care about are
the dot products of the unknown vector with the data
points.

Slide11.4.9

Here's the result of running a quadratic programming
algorithm to find the maximal margin separator for the
bankruptcy example. Note that only four points have non-
zero alpha's. They are the closest pointsto the line and
are the ones that actually define the line.

Bankruptcy Example

[“|Scheme Graphics =10l x| -

ayy' for support vectors are
non-zero, all others are zero.

6.034 - Spring 03 « 9 (E
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Key Points

e L earning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

6.034 - Spring 03 « 10

Slide 11.4.10

Let's highlight once again afew of the key points about
SVM training and classification. First and foremost, and
at the risk of repeating myself, recall that the training and
classification of SVMs depends only on the value of the
dot products of data vectors. That is, if we have away of
getting the dot products, the computation does not
otherwise depend explicitly on the dimensionality of the
feature space.

Slide11.4.11

The fact that we only need dot products (as we will see
next) means that we will be able to substitute more
general functions for the traditional dot product operation
to get more powerful classifiers without really changing
anything in the actual training and classification
procedures.

¢ Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

¢ Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

Key Points

6.034 - Spring 03 e 11 (E

Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

e Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

¢ The classifier depends only on the support vectors,
not on all the training points.

6.034 - Spring 03 « 12

Slide11.4.12

Another point to remember isthat the resulting classifier
does not (in general) depend on al the training points but
only on the ones "near the margin”, that is, those that help
define the boundary between the two classes.
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Slide 11.4.13

The maximum margin constraint helps reduce the Key Points
variance of the SVM hypotheses. Insisting on a minimum
magnitude weight vector drastically cuts down on the
size of the hypothesis class and helps avoid overfitting.

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

¢ Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

¢ The classifier depends only on the support vectors,
not on all the training points.

e Max margin lowers hypothesis variance.

6.034 - Spring 03 « 13 4

Slide11.4.14

Key Points Finally, we should keep firmly in mind that the SYM
training process guarantees a unique global maximum.
And it runsin time polynomia in the number of data
points and the dimensionality of the data.

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

¢ Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

e The classifier depends only on the support vectors,
not on all the training points.

e Max margin lowers hypothesis variance.

e The optimal classifier is defined uniquely — there
are no “local maxima” in the search space

e Polynomial in number of data points and
dimensionality

6.034 - Spring 03 » 14 4

6.034 Notes: Section 11.5
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Slide11.5.1 .
_ _ Not Linearly Separable?
Thusfar, we have only been talking about the linearly
separable case. What happens for the case in which we eRequire 0< ¢, <C
have a"nearly separable” problem? That is, some e C specified by user; controls tradeoff between size
"noise points’ that are bound to be misclassified by a of margin and classification errors
linear separator. ¢ C = oo for separable case
Itisuseful to think about the behavior of the dual
perceptron In this algorithm, the value of the Lagrange ® e o ° .
multiplier, alphg; for apoint isincremented . . o o s 2 .
proportionally to its distance to the separator. In fact, if & o 5 i & @
the point is classified correctly, no change is made to - N .'
the multiplier. We can see that if point i stubbornly " * = N
resists being classified, then the value of alphag; will R ® " ° "
continue to grow without bounds. s & . o®
So, one strategy for dealing with these noise pointsisto . ¢
limit the maximal value of any of the alphg;'s to some 6.034 - Spring 03 » 1

C. And, furthermore, to ignore the points with this
maximal value when computing the margin. Clearly, if we ignore enough points, we can always get back to alinearly separable
problem. By choosing alarge value of C, we will work very hard at correctly classifying all the points, alow value of C will allow usto
give up more easily on many of the points.

We can get some intuition about C by thinking about the dual perceptron. Remember that in the perceptron, the magnitude of alphais
related to how many times a point has been misclassified. By putting alimit on alpha, we limit the effect any individual "outlier" point
can have on the definition of the separator. We say that we are willing to live with some misclassifications.

Slide11.5.2
C Change This simple example shows how changing C causes the
geometric margin to change. For low values of C the
[ Scheme Graphic i BED margin between positives and negatives is reduced as the
| algorithm tries to "capture" the wayward point off on the
" - right. For high values of C, the separator is closer to
where it would be if the "outlier" were not there.
[ J e o
° <]
C=100 c=1

6.034 - Spring 03 » 2 (E

file:///CJ/Documents¥%20and%20Settings/ T/My%20Documents...eaching/6.034/04/| essons/ Chapter11/linear-handout.html (23 of 33)4/23/2004 6:37:00 AM



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts I nstitute of Technology. All rights reserved

Slide11.5.3

Here is an example of a separator on a simple data set
with four points, which are linearly separable. The colors
show the result returned by the classification function on
each point in the space. Gray means near 1 or -1. The
more intense the blue, the more positive the result; the
more intense the red, the more negative. Points lying
between the two gray lines return values between -1 and
+1.

Note that only three of the four samples are actually used
to define w, the ones circled. The other plus sample
might as well not be there; its coefficient alphais zero.

The samples that are actually used are the support

Example: Linearly Separable

Image by Patrick Winston

6.034 - Spring 03 « 3 (E

Slide11.54

The next example is the same as the previous example,
but with the addition of another plus sample in the lower
left corner. There are several points of interest.

First, the optimization has failed to find a separating line,
asindicated by the minus sample surrounded by ared
disk. The alphas were bounded and so the contribution of
this misclassified point is limited and the algorithm
converges to aglobal optimum.

Second, the added point produced quite a different
solution. The algorithm islooking for best possible
dividing line; a tradeoff between margin and
classification error defined by C. If we had kept a
solution close to the one in the previous slide, the rogue
plus point would have been misclassified by alot, while
with this solution we have reduced the misclassification
margin substantially.

vectors.
Another example: Not linearly
separable
Image by Patrick Winston
6.034 - Spring 03 » 4 q
Slide 11.5.5

However, even if we provide a mechanism for ignoring
noise points, aren't we really limited by alinear
classifier? Well, yes.

However, in many cases, if we transform the feature
valuesin anon-linear way, we can transform a problem
that was not linearly separable into onethat is. This
example, shows that we can create a circular separator by
finding alinear classifier in afeature space defined by the
squares of the original feature values. That is, we can
obtain a non-linear classifier in the original space by
finding alinear classifier in atransformed space.

Hold that thought.

Isn’t a linear classifier very limiting?

/’/—\
(/ //—tx )
XZ \//
+| +
= + + -
+ +
+ + o+ Xy
- + * -
not linearly linearly separable using
separable squared value of features.

Important: Linear separator in transformed feature space
maps into non-linear separator in original feature space

6.034 - Spring 03 o 5 (E
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Not separable?

/

£

/
#

Try a higher dimensional space!

Slide11.5.6

Furthermore, when training samples are not separable in
the original space they may be separable if you perform a
transformation into a higher dimensional space,
especially one that is a non-linear transformation of the
input space.

For the example shown here, in the original feature space,
the samples dl liein aplane, and are not separable by a
straight line. In the new space, the samplesliein athree
dimensional space, and happen to be separable by a
plane.

The heuristic of moving to a higher dimensional space is
general, and does not depend on using SVMs.

Not separable with 2D line

Separable with 3D plane

However, we will see that the support vector approach
lendsitself to movement into higher dimensional spaces
because of the exclusive dependence of the support
vector approach on dot products for learning and

6.034 - Spring 03 « 6 4

Slide11.5.7

First, suppose thereis afunction, phi, that putsthe
vectors into another, higher-dimensiona space, which
will also typically involve a non-linear mapping of the
feature values. In general, the higher the dimensionality,
the more likely there will be a separating hyperplane.

subsequent classification.

What you need

e To get into the new feature space, you use o(x')

e The transformation can be to a higher-dimensional
feature space and may be non-linear in the feature
values.

By moving to a higher-dimensional feature space, we are
also moving to abigger hypothesis class, and so we
might be worried about overfitting. However, because we
are finding the maximum margin separator, the danger of
overfitting is greatly reduced.

6.034 - Spring 03 « 7

What you need

e To get into the new feature space, you use o(x’)

e The transformation can be to a higher-dimensional
feature space and may be non-linear in the feature
values.

e Recall that SVM’s only use dot products of the
data, so

e To optimize classifier, you need ®(x')- ®(x*)

e To run classifier, you need @(x')- d(u)

e So, all you need is a way to compute dot products
in transformed space as a function of vectors in
original space!

6.034 - Spring 03 « 8

Slide11.5.8

Even if we aren't in danger of overfitting, there might be
computational problems if we move into higher
dimensional spaces. In real applications, we might want
to move to orders of magnitude more features, or even (in
some sense) infinitely many features! We'll need a clever
trick to manage this...

Y ou have learned that to work in any space with the
support vector approach, you will need (only) the dot
products of the samplesto train and you will need the dot
products of the samples with unknowns to classify.

Note that you don't need anything else. So, all we need is
away of computing the dot product between the
transformed feature vectors.
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Slide11.5.9

Let's assume that we have a function that allows us to The “Kernel Trick”
compute the dot products of the transformed vectorsin a
way that depends only on the original feature vectors and
not directly on the transformed vectors. We will call this

o If dot products can be efficiently computed by
O(x')- O(x*) = K(x', x*)

the kernel function. (This usage of the term "kernel" is e Then, all you need is a function on low-dim inputs
related to kernel functions we saw in regression; they are K(x', x*)
both about messuring effective distances between points e You don't need ever to construct high-dimensional
in different spaces.) o(x')
X
Then you do not need to know how to do the
transformations themselves! Thisiswhy the support-
vector approach is so appealing. The actual
transformations may be computationally intractable, or
you may not even know how to do the transformations at
al, but you can still learn and classify without ever
moving explicitly up into the high-dimensional space.
Slide 11.5.10
Standard Choices For Kernels So now we r!eed to find some phis (mappi ngsfrom low to
high-dimensional space) that have a convenient kernel
¢ No change (linear kernel) function associated with them. The simplest case is one
_ . . D where phi istheidentity function and K isjust the dot
O(x')- O(x*) = K(x',x*) =x' - x product.
Slide 11.5.11
One such other kernel function isthe dot product raised Standard Choices For Kernels
to a power; the actual power is a parameter of the
learning algorithm that determines the properties of the ¢ No change (linear kernel)
solution.

O(x") - O(x*) = K(x', x*) = x' - x*

¢ Polynomial kernel (nth order)

K(x',x*) =1 +x"-x¥)"

6.034 - Spring 03 « 11
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(one feature)

Polynomial Kernel Example

Side 11.5.12

Let'slook at asimple example of using a polynomial
kernel. Consider the one dimensional problem shown

—E u-z ! ! ! !— X separable here, which is clearly not separable. Let'smap it into a
higher dimensional feature space using the polynomial
kernel of second degree (n=2).

6.034 - Spring 03 » 12 4

Slide 11.5.13

_ _ Polynomial Kernel Example
Note that a second degree polynomial kernel is (one feature)
equivalent to mapping the single feature value x to a Not
three dimensional space with feature values x2, sqrt(2)x, N 0-2 ! ! ! !‘ X separable
and 1. You can see that the dot product of two of these (x) = (x2,+2x, 1)
feature vectorsis exactly the value computed by the -
polynomial kernel function. . Separckle

If we plot the original pointsin the transformed feature
space (using just the first two features), we seein fact
that the two classes are linearly separable. Clearly, the
third feature value (equa to 1) will beirrelevant in
finding a separator.

The important aspect of al of thisisthat we can find and
use such a separator without ever explicitly computing
the transformed feature vectors - only the kernel function
values are required.

0.35

0.3

/ O(x) - ©(2)

0.25

/ =x?z*+2xz+1

0.2

/ =(1+xz)
+Neg

xA2

0.15

/ = Pos

0.1

0.05

0.2 0.4 0.6 0.8 1

rt(2) x
sart(2) 6.034 - Spring 03 = 13

Polynomial Kernel

K(x,z2)=(1+x-2)°

O(x) = [x2 X2 J2x,%, 22X, N2x, 1]

e We can verify that:

= (1 +x,2, + x,2,)
=(1+x-2)
= K(XIZ)

¢ Polynomial kernel for n=2 and features x=[x; X,]

is equivalent to the following feature mapping:

D(X) - D(Z) = X222 + X222 +2X,X,2,Z, +2X,Z, +2X,2, +1

6.034 - Spring 03 « 14

Slide 11.5.14

Hereisasimilar transformation for atwo dimensional
feature vector. Note that the dimension of the
transformed feature vector is now 6. In general, the
dimension of the transformed feature vector will grow
very rapidly with the dimension of the input vector and
the degree of the polynomial.
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Slide 11.5.15
Let'slook at the behavior of these non-linear kernels.

The decision surface produced by the non-linear kernels
iscurved. Hereis an example for which the
(unsuccessful) attempt on the left is with a simple dot
product; the attempt on the right is done with a
polynomial kernel of degree 3. Note the curve in the
solution, and note that four of the samples have become
support vectors.

Generally, the higher-dimensional the transformed space,
the more complex the separator isin the origina space,
and the more support vectors will be required to specify
it.

Polynomial Kernel

Images by Patrick Winston

6.034 - Spring 03 « 15

Standard Choices For Kernels
e No change (linear kernel)
D(x')- d(x*) = K(x', x*) = x' - x*
¢ Polynomial kernel (nth order)
K(x',x*) =1 +x'-x)"

¢ Radial basis kernel (o is standard deviation)
7(xiixk)_(xi7xk)

20°

6.034 - Spring 03 = 16

Slide 11.5.16

Another popular kernel function is an exponentia of the
square of the distance between vectors, divided by sigma
squared. Thisisthe formulafor a Gaussian bump in the
feature space, where sigma is the standard deviation of
the Gaussian. Sigma s a parameter of the learning that
determines the properties of the solution.

Slide11.5.17

Y ou can get acurved separator if you useradial basis
functions, which give us aclassifier that is a sum of the
values of several Gaussian functions.

Let's pause a minute to observe something that should
strike you as a bit weird. When we used the polynomial
kernels, we could see that each input feature vector was
being mapped into a higher-dimensional, possibly very
high dimensional, feature vector. With the radial-basis
kernel each input feature vector is being mapped into a
function that is defined over the whole feature space! In
fact, each input feature point is being mapped into a point
in an infinite-dimensional feature space (known asa
Hilbert space). We then build the classifier as sum of
these functions. Whew!

The actual operation of the processis less mysterious
than this "infinite-dimensional" mapping view, as we will
see by avery simple example.

Radial-basis kernel

¢ Classifier based on sum of Gaussian bumps with
standard deviation o, centered on support vectors.

h(u) = sign[h'(u)]

k
H) =Y ay'K(x',u)+b
i=1

e

K(x',u)=e

202
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Radial-basis kernel
o=0.1

-_x

0.6

6.034 -

Slide 11.5.18

Along the bottom you see that we're dealing with the
simple one-dimensional example that we looked at earlier
using a polynomial kernel. The blue points are possitive
and the pinkish purple ones are negative. Clearly this
arrangement is not linearly separable.

K (xi,u) can be seen as a"Gaussian bump"; that is, as a
function with a maximum at u = xi, that decreases
monotonically with the distance between u and xi, but is
aways positive and goes to 0 at infinite distance. The
parameter sigma specifies how high the bump is and how
fast it falls off (the area under the curve of each bumpis
1, no matter what the value of sigma is). The smaller the
sigma, the more sharply peaked the bump.

With aradial-basis kernel, we will be looking for a set of
multipliers for Gaussian bumps with the specified sigma
(hereit is 0.1) so that the sum of these bumps (plus an
offset) will give us a classification function that's positive

Spring 03 « 18

negative points are.

where the positive points are and negative where the

Slide 11.5.19

Here isthe solution obtained from an SVM quadratic
optimization algorithm. Note that four points are support
vectors, as expected, the points near where the decision
boundary has to be. The farther positive points receive
alpha=0. The value of the offset, b is also shown.

The blue and pink Gaussian bumps correspond to copies
of a Gaussian with standard deviation of 0.1 scaled by
the corresponding al pha values.

Radial-basis kernel
@, =176 a,=-1.76
b=0.525

;=176 o, =-1.76

0.1

o3

25

b N/
K W

0:1 0. 0.3 0.4 0.5
support vectors

07
X

i_ o8

0.6
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Slide 11.5.20

The black line corresponds to the sum of the four bumps
(and the offset). The important point is to notice where
this line crosses zero since that's the decision surface (in
one dimension). Notice that, as required, it succeedsin
separating the positive from the negative points.

Slide 11.5.21

Here we see a separator for our simple five point
example computed using radial basis kernels. The
solution on the left, for reference, isthe original dot
product. The solution on theright isfor a radial basis
function with a sigma of one. Note that all the points are
Now support vectors.

Radial-basis kernel
(large o)

Images by Patrick Winston
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Another radial-basis example
(small o)

Image by Patrick Winston
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¢

Slide 11.5.22

If a space istruly convoluted, you can always cover it
with a radial basis solution with small-enough sigma. In
extreme cases, like this one, each of the four plus and
four minus samples has become a support vector, each
specialized to the small part of thetotal spacein its
vicinity. Thisisbasically similar to 1-nearest neighbor
and isjust as powerful and subject to overfitting.
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Slide 11.5.23

At this point alarm bells may be ringing. By creating Cross-Validation Error
these very high dimensional feature vectors, are we just
setting ourselves up for severe overfitting? Intuitively, the
mor e parameters we have the better we can fit the input,
but that may not lead to better performance on new data.

¢ Does mapping to a very high-dimensional space
lead to over-fitting?

e Generally, no, thanks to the fact that only the
support vectors determine the decision surface.

It turns out that the fact that the SYM decision surface

depends only on the support vectors and not directly on

the dimensionality of the space comes to our rescue.

6.034 - Spring 03 « 23 4

Slide 11.5.24

Cross-Validation Error We can estimate the error on new data by computing the
cross-validation error on the training data. If we look at
the linearly separable casg, it is easy to see that the
expected value of leave-one-out cross-validation error is
bounded by the proportion of support vectors.

e Does mapping to a very high-dimensional space
lead to over-fitting?

e Generally, no, thanks to the fact that only the
support vectors determine the decision surface.

e The expected leave-one-out cross-validation error If we take a data point that is not a support vector from
depends on number of support vectors, not the training set, the computation of the separator will not
dimensionality of feature space. be affected and so it will be classified correctly. If we

take a support vector out, then the classifier will in

Expected # support vectors general change and there may be an error. So, the

Expected CV error <

# training samples expected generalization error depends on the number of
» If most data points are support vectors, a sign of support vectors and not on the dimension.
possible overfitting, independent of the Note that using a radial basis kernel with very small

dimensionality of feature space. sigma gives you a high expected number of support

vectors and therefore a high expected cross-validation
sosa-spimgos «2e ¢ | EITOT, as expected. Yet, aradial basis kernel with large
sigma, although of similar dimensionality, has fewer

expected support vectors and is likely to generalize better.

We shouldn't take this bound too seriously; it is not actually very predictive of generalization performance in practice but it does point
out an important property of SYMs - that generalization performance is more related to expected number of support vectors than to
dimensionality of the transformed feature space.
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Slide 11.5.25
So, let's summarize the SYM story. One key point is that Summary
SVMs have a training method that guarantees a unique & B sirale alsbsl Gk
global optimum. This eliminate many headaches in other wHg=D °_ el 5 |mum. )
approaches to machine learning. e Quadratic programming or gradient descent
6.034 - Spring 03 « 25 4
Slide 11.5.26
Summary The other advantage of SYMs is that there are relatively
« A sinale alobal . few parameters to be chosen: C, the constant used to
single go. a maX|murT1 _ trade off classification error and width of the margin,
» Quadratic programming or gradient descent and the kernel parameter, such as sigma in the radial
e Fewer parameters basiskernel.
* C and kernel parameters (n for polynomial, o for | These can both be continuous parameters and so there
radial basis kernel) still remains a search requiring some form of validation,
but these are few parameters compared to some of the
other methods.
6.034 - Spring 03 « 26 q
Slide 11.5.27
And, last but not least, isthe kernel trick. That is, that the Summary

whole process depends only on the dot products of the

feature vectors, which is the key to the generalization to * A single glqbal maximum )
non-linear classifiers. e Quadratic programming or gradient descent

e Fewer parameters
¢ C and kernel parameters (n for polynomial, c for
radial basis kernel)
¢ Kernel
¢ Quadratic minimization depends only on dot
products of sample vectors
¢ Recognition depends only on dot products of
unknown vector with sample vectors
¢ Reliance on only dot products enables efficient
feature mapping to higher-dimensional spaces
where linear separation is more effective.

6.034 - Spring 03 « 27 (E
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Slide 11.5.28
Real Data The linear separator isverysjmplghypotheeis class but it
can perform very well on appropriate data sets. On the
e Wisconsin Breast Cancer Data Wisconsin breast cancer data, the maximal margin
¢ 9 features classifier, with a linear kernel, doesas well or better as
eC=1 any of the other classifiers we have seen on held-out
data. Note that only 37 of the 512 training points are
¢ 37 support vectors are used from 512 training SUpPOrt Vectors, y ap
data points
¢ 12 prediction errors on training set (98%
accuracy)
® 96% accuracy on 171 held out points
¢ Essentially same performance as nearest
neighbors and decision trees
e Don't expect such good performance on every data
set.
Slide 11.5.29
SVMs have proved useful in a wide variety of Success Stories
applications, particularly those with large numbers of
features, such asimage and text recognition problems.
They are the method of choicein text classification e Gene microarray data
problems, such as categorization of news articles by « outperformed all other classifiers

topic, or spam detection, because they can work in a
huge feature space (typically with a linear kernel)
without too much fear of overfitting.

e specially designed kernel

e Text categorization
e linear kernel in >10,000 D input space
¢ best prediction performance

¢ 35 times faster to train than next best classifier
(decision trees)

e Many others:
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
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