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6.034 Notes: Section 11.1

Slide 11.1.1 
We have been using this simulated bankruptcy data set 
to illustrate the different learning algorithms that 
operate on continuous data. Recall that R is supposed to 
be the ratio of earnings to expenses while L is supposed 
to be the number of late payments on credit cards over 
the past year. We will continue using it in this section 
where we look at a new hypothesis class, linear 
separators. 

One key observation is that each hypothesis class leads 
to a distinctive way of defining the decision boundary 
between the two classes. The decision boundary is 
where the class prediction changes from one class to 
another. Let's look at this in more detail. 

Slide 11.1.2 
We mentioned that a hypothesis for the 1-nearest 
neighbor algorithm can be understood in terms of a 
Voronoi partition of the feature space. The cells 
illustrated in this figure represent the feature space points 
that are closest to one of the training points. Any query in 
that cell will have that training point as its nearest 
neighbor and the prediction will be the class of that 
training point. The decision boundary will be the 
boundary between cells defined by points of different 
classes, as illustrated by the bold line shown here. 
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Slide 11.1.3 
Similarly, a decision tree also defines a decision 
boundary in the feature space. Note that although both 1-
NN and decision trees agree on all the training points, 
they disagree on the precise decision boundary and so 
will classify some query points differently. This is the 
essential difference between different learning 
algorithms. 

Slide 11.1.4 
In this section we will be exploring linear separators 
which are characterized by a single linear decision 
boundary in the space. The bankruptcy data can be 
successfully separated in that manner. But, notice that in 
contrast to 1-NN and decision trees, there is no guarantee 
that a single linear separator will successfully classify 
any set of training data. The linear separator is a very 
simple hypothesis class, not nearly as powerful as either 
1-NN or decision trees. However, as simple as this class 
is, in general, there will be many possible linear 
separators to choose from. 

Also, note that, once again, this decision boundary 
disagrees with that drawn by the previous algorithms. So, 
there will be some data sets where a linear separator is 
ideally suited to the data. For example, it turns out that if 
the data points are generated by two Gaussian 
distributions with different means but the same standard 
deviation, then the linear separator is optimal. 

Slide 11.1.5 
A data set that can be successfully split by a linear 
separator is called, not surprisingly, linearly separable. 
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Slide 11.1.6 
As we've mentioned, not all data sets are linearly 
separable. Here's one for example. Another classic non-
linearly-separable data set is our old nemesis XOR. 

It turns out, although it's not obvious, that the higher the 
dimensionality of the feature space, the more likely that a 
linear separator exists. This will turn out to be important 
later on, so let's just file that fact away. 

Slide 11.1.7 
When faced with a non-linearly-separable data set, we 
have two options. One is to use a more complex 
hypothesis class, such as shown here. 

Slide 11.1.8 
Or, keep the simple linear separator and accept some 
errors. This is the classic bias/variance tradeoff. Use a 
more complex hypothesis with greater variance or a 
simpler hypothesis with greater bias. Which is more 
appropriate depends on the underlying properties of the 
data, including the amount of noise. We can use our old 
friend cross-validation to make the choice if we don't 
have much understanding of the data. 
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Slide 11.1.9 
So, let's look at the details of linear classifiers. First, we 
need to understand how to represent a particular 
hypothesis, that is, the equation of a linear separator. We 
will be illustrating everything in two dimensions but all 
the equations hold for an arbitrary number of dimensions. 

The equation of a linear separator in an n-dimensional 
feature space is (surprise!) a linear equation which is 
determined by n+1 values, the components of an n-
dimensional coefficient vector w and a scalar value b. 
These n+1 values are what will be learned from the data. 
The x will be some point in the feature space. 

We will be using dot product notation for compactness 
and to highlight the geometric interpretation of this 
equation (more on this in a minute). Recall that the dot 
product is simply the sum of the componentwise products 
of the vector components, as shown here. 

Slide 11.1.10 
In two dimensions, we can see the geometric 
interpretation of w and b. The vector w is perpendicular 
to the linear separator; such a vector is known as the 
normal vector. Often we say "the vector normal to the 
surface". The scalar b, which we will call the offset, is 
proportional to the perpendicular distance from the origin 
to the linear separator. The constant of proportionality is 
the negative of the reciprocal of the magnitude of the 
normal vector. We'll examine this in more detail soon. 

By the way, the choice of the letter "w" is traditional and 
meant to suggest "weights", we'll see why when we look 
at neural nets. The choice of "b" is meant to suggest 
"bias" - which is the third different connotation of this 
word in machine learning (the bias of a hypothesis class, 
bias vs variance, bias of a separator). They are all 
fundamentally related; they all refer to a difference from 
a neutral value. To keep the confusion down to a dull 
roar, we won't call b a bias term but are telling you about 

this so you won't be surprised if you see it elsewhere. 

Slide 11.1.11 
Sometimes we will use the following trick to simplify the 
equations. We'll treat the offset as the 0th component of 
the weight vector w and we'll augment the data vector x 
with a 0th component that will always be equal to 1. Then 
we can write a linear equation as a dot product. When we 
do this, we will indicate it by using an overbar over the 
vectors. 
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Slide 11.1.12 
First a word on terminology: the equations we will be 
writing apply to linear separators in n dimensions. In two 
dimensions, such a linear separator is refered to as a 
"line". In three dimensions, it is called a "plane". These 
are familiar words. What do we call it in higher 
dimensions? The usual terminology is hyperplane. I 
know that sounds like some type of fast aircraft, but that's 
the accepted name. 

Let's look at the geometry of a hyperplane a bit more 
closely. We saw earlier that the offset b in the linear 
separator equation is proportional to the perpendicular 
distance from the origin to the linear separator and that 
the constant of proportionality is the reciprocal of the 
magnitude of the w vector (negated). Basically, we can 
multiply both sides of the equation by any number 
without affecting the equality. So, there are an infinite set 
of equations all of which represent the same separator. 

If we divide the equation through by the magnitude of w 
we end up with the situation shown in the figure. The normal vector is now unit length (denoted by the hat on the w) and the offset b is 
now equal to the perpendicular distance from the origin (negated). 

Slide 11.1.13 
It's crucial to understand that the quantity w-hat dot x 
plus b is the perpendicular distance of point x to the 
linear separator. 

If you recall, the geometric interpretation of a dot product 
a . b is that it is a number which is the magnitude of a 
times the magnitude of b times the cosine of the angle 
between the vectors. If one of the vectors, say a, has unit 
magnitude then what we have is precisely the magnitude 
of the projection of the b vector onto the direction 
defined by a. Thus w-hat dot x is the distance from x to 
the origin measured perpendicular to the hyperplane. 

Looking at the right triangle defined by the w-hat and the 
x vector, both emanating from the origin, we see that the 
projection of x onto w-hat is the length of the base of the 
triangle, where x is the hypotenuse and the base angle is 
theta. 

Now, if we subtract out the perpendicular distance to the 
origin we get the distance of x from the hyperplane (rather than from the origin). Note that when theta is 90 degrees (that is, w and x are 
perpendicular), the cosine is equal to 0 and the distance is precisely b as we expect. 
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Slide 11.1.14 
This distance measure from the hyperplane is signed. It is 
zero for points on the hyperplane, it is positive for points 
in the side of the space towards which the normal vector 
points, and negative for points on the other side. Notice 
that if you multiply the normal vector w and the offset b 
by -1, you get an equation for the same hyperplane but 
you switch which side of the hyperplane has positive 
distances. 

Slide 11.1.15 
We can now exploit the sign of this distance to define a 
linear classifier, one whose decision boundary is a 
hyperplane. Instead of using 0 and 1 as the class labels 
(which was an arbitrary choice anyway) we use the sign 
of the distance, either +1 or -1 as the labels (that is the 
values of the yi). 

Slide 11.1.16 
A variant of the signed distance of a training point to a 
hyperplane is the margin of the point. The margin 
(gamma) is the product of the actual signed distance for 
th epoint and the desired sign of the distance, yi. If they 

agree (the point is correctly classified), then the margin is 
positive; if they disagree (the classification is in error), 
then the margin is negative. 
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6.034 Notes: Section 11.2

Slide 11.2.1 
So far we've talked about how to represent a linear 
hypothesis but not how to find one. In this slide is the 
perceptron algorithm, developed by Rosenblatt in the 
mid 50's. This is not exactly the original form of the 
algorithm but it is equivalent and it will help us later to 
see it in this form. 

This is a greedy, "mistake driven" algorithm not unlike 
the Boolean function learning algorithms we saw 
earlier. We will be using the extended form of the 
weight and data-point vectors in this algorithm. The 
extended weight vector is what we are trying to learn. 

The first step is to start with an initial value of the 
weight vector, usually all zeros. Then we repeat the 
inner loop until all the points are correctly classified 
using the current weight vector. The inner loop is to 
consider each point. If the point's margin is positive 
then it is correctly classified and we do nothing. 
Otherwise, if it is negative or zero, we have a mistake and we want to change the weights so as to increase the margin (so that it 
ultimately becomes positive). 

The trick is how to change the weights. It turns out that using a value proportional to yx is the right thing. We'll see why, formally, 
later. For now, let's convince ourselves that it makes sense. 

Slide 11.2.2 
Consider the case in which y is positive; the negative case 
is analogous. If the jth component of x is positive then we 
will increase the corresponding component of w. Note 
that the resulting effect on the margin is positive. If the 
jth component of x is negative then we will decrease the 
corresponding component of w, and the resulting effect 
on the margin is also positive. 
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Slide 11.2.3 
So, each change of w increases the margin on a particular 
point. However, the changes for the different points 
interfere with each other, that is, different points might 
change the weights in opposing directions. So, it will not 
be the case that one pass through the points will produce 
a correct weight vector. In general, we will have to go 
around multiple times. 

The remarkable fact is that the algorithm is guaranteed to 
terminate with the weights for a separating hyperplane as 
long as the data is linearly separable. The proof of this 
fact is beyond our scope. 

Notice that if the data is not separable, then this algorithm 
is an infinite loop. It turns out that it is a good idea to 
keep track of the best separator you've seen so far (the 
one that makes the fewest mistakes) and after you get 
tired of going around the loop, return that one. This 
algorithm even has a name (the pocket algorithm: see, it 
keeps the best answer in its pocket...). 

Slide 11.2.4 
This shows a trace of the perceptron algorithm on the 
bankruptcy data. Here it took 49 iterations through the 
data (the outer loop) for the algorithm to stop. The 
hypothesis at the end of each loop is shown here. Recall 
that the first element of the weight vector is actually the 
offset. So, the normal vector to the separating hyperplane 
is [0.94 0.4] and the offset is -2.2 (recall that is 
proportional to the negative perpendicular distance from 
origin to the line). 

Note that the units in the horizontal and vertical 
directions in this graph are not equal (the tick marks 
along the axes indicate unit distances). We did this since 
the range of the data on each axis is so different. 

One usually picks some small "rate" constant to scale the 
change to w. It turns out that for this algorithm the value 
of the rate constant does not matter. We have used 0.1 in 
our examples, but 1 also works well. 

Slide 11.2.5 
Let's revisit the issue of why we picked yx to increment w 
in the perceptron algorithm. It might have seemed 
arbitrary but it's actually an instance of a general strategy 
called gradient ascent for finding the input(s) that 
maximize a function's output (or gradient descent when 
we are minimizing). 

The strategy in one input dimension is shown here. We 
guess an initial value of the input. We calculate the slope 
of the function at that input value and we take a step that 
is proportional to the slope. Note that the sign of the 
slope will tell us whether an increase of the input variable 
will increase or decrease the value of the output. The 
magnitude of the slope will tell us how fast the function 
is changing at that input value. The slope is basically a 
linear approximation of the function which is valid "near" 
the chosen input value. Since the approximation is only 
valid locally, we want to take a small step (determined by 
the rate constant eta) and repeat. 
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We want to stop when the output change is zero (or very small). This should correspond to a point where the slope is zero, which 
should be a local extremum of the function. This strategy will not guarantee finding the global maximal value, only a local one. 

Slide 11.2.6 
The generalization of this strategy to multiple input 
variables is based on the generalization of the notion of 
slope, which is the gradient of the function. The gradient 
is the vector of first (partial) derivatives of the function 
with respect to each of the input variables. The gradient 
vector points in the direction of steepest increase of the 
function output. So, we take a small step in that direction, 
recompute the gradient and repeat until the output stops 
changing. Once again, this will only find us a local 
maximum of the function, in general. However, if the 
function is globally convex, then it will find the global 
optimum. 

Slide 11.2.7 
In general, the choice of the rate constant (eta), which 
determines the step size, is fairly critical. Unfortunately, 
no single value is appropriate for all functions. If one 
chooses a very conservative small rate, it can take a long 
time to find a minimum, if one takes too big steps there is 
no guarantee that the algorithm will even converge to a 
minimum; it can oscillate as shown in the figure here 
where the sign of the slope changes and causes a back-
and-forth search. 

In more sophisticated search algorithms one does a 
search along the specified direction looking for a value of 
the step size that guarantees an increase in the function 
value. 
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Slide 11.2.8 
Now we can see that our choice of increment in the 
perceptron algorithm is related to the gradient of the sum 
of the margins for the misclassified points. 

Slide 11.2.9 
If we actually want to maximize this sum via gradient 
descent we should sum all the corrections for every 
misclassified point using a single w vector and then apply 
that correction to get a new weight vector. We can then 
repeat the process until convergence. This is normally 
called an off-line algorithm in that it assumes access to 
all the input points. 

What we actually did was a bit different, we modified w 
based on each point as we went through the inner loop. 
This is called an on-line algorithm because, in principle, 
if the points were arriving over a communication link, we 
would make our update to the weights based on each 
arrival and we could discard the points after using them, 
counting on more arriving later. 

Another way of thinking about the relationship of these 
algorithms is that the on-line version is using a 
(randomized) approximation to the gradient at each point. 
It is randomized in the sense that rather than taking a step 
based on the true gradient, we take a step based on an estimate of the gradient based on a randomly drawn example point. In fact, the 
on-line version is sometimes called "stochastic (randomized) gradient ascent" for this reason. In some cases, this randomness is good 
because it can get us out of shallow local minima. 
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Slide 11.2.10 
Here's another look at the perceptron algorithm on the 
bankruptcy data with a different initial starting guess of 
the weights. You can see the different separator 
hypotheses that it goes through. Note that it converges to 
a different set of weights from our previous example. 
However, recall that one can scale these weights and get 
the same separator. In fact these numbers are 
approximately 0.8 of the ones we got before, but only 
approximately; this is a slightly different separator. 

The perceptron algorithm can be described as a gradient 
ascent algorithm, but its error criterion is slightly unusual 
in that there are many separators that all have zero error. 

Slide 11.2.11 
Recall that the perceptron algorithm starts with an initial 
guess for the weights and then adds in scaled versions of 
the misclassified training points to get the final weights. 
In this particular set of 10 iterations, the points indicated 
on the left are misclassified some number of times each. 
For example, the leftmost negative point is misclassified 
in each iteration except the last one. If we sum up the 
coordinates of each of these points, scaled by how many 
times each is misclassified and by the rate constant we 
get the total change in the weight vector. 

Slide 11.2.12 
This analysis leads us to a somewhat different view of the 
perceptron algorithm, usually called the dual form of the 
algorithm. Call the count of how many times point i is 
misclassified, alphai. Then, assuming the weight vector is 

initalized to 0s, we can write the final weight vector in 
terms of these counts and the input data (as well as the 
rate constant). 
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Slide 11.2.13 
Since the rate constant does not change the separator we 
can simply assume that it is 1 and ignore it. Now, we can 
substitute this form of the weights in the classifier and we 
get the classifier at the bottom of the slide, which has the 
interesting property that the data points only appear in 
dot-products with other data points. This will turn out to 
be extremely important later; file this one away. 

Slide 11.2.14 
We can now restate the perceptron algorithm in this 
interesting way. The separator is described as a weighted 
sum of the input points, with alphai the weight for point i. 

Initially, set all of the alphas to zero, so the separator has 
all zero's as coefficients. 

Then, for each point, compute its margin with respect to 
the current separator. If the margin is positive, the point 
is classified correctly, so do nothing. If the margin is 
negative, add that point into the weights of the separator. 
We can do that simply by incrementing the associated 
alpha. 

Finally, when all of the points are classified correctly, we 
return the weighted sum of the inputs as the coefficients 
fo the separator. Note that if the data is not linearly 
separable, then the algorithm will loop forever, the alphas 
growing without bound. 

You should convince yourself that this dual form is 
equivalent to the original. Once again, you may be wondering...so what? I'll say again; file this away. It has surprising consequences. 

6.034 Notes: Section 11.3
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Slide 11.3.1 
There is no easy way to characterize which particular 
separator the perceptron algorithm will end up with. In 
general, there can be many separators for a data set. 
Even in the tightly constrained bankruptcy data set, we 
saw two runs of the algorithm with different starting 
points ended up with slightly different hypotheses. Is 
there any reason to prefer one separator over the others? 

Slide 11.3.2 
Yes. One natural choice is to pick the separator that has 
the maximal margin to its closest points on either side. 
This is the separator that seems most conservative. Any 
other separator will be "closer" to one class than to the 
other. The one shown in this figure, for example, seems 
like it's closer to the black points on the lower left than to 
the red ones. 

Slide 11.3.3 
This one seems safer, no? 

Another way to motivate the choice of the maximal 
margin separator is to see that it reduces the "variance" of 
the hypothesis class. Recall that a hypothesis has large 
variance if small changes in the data result in a very 
different hypothesis. With a maximal margin separator, 
we can wiggle the data quite a bit without affecting the 
separator. Placing the separator very close to positive or 
negative points is a kind of overfitting; it makes your 
hypothesis very dependent on details of the input data. 

Let's see if we can figure out how to find the separator 
with maximal margin as suggested by this picture. 
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Slide 11.3.4 
First we have to define what we are trying to optimize. 
Clearly we want to use our old definition of margin, but 
we'll have to deal with a couple of issues first. Note that 
we're using the w, b notation instead of w bar, because 
we will end up giving b special treatment in the future. 

Slide 11.3.5 
Remember that any scaling of w and b defines the same 
line; but it will result in different values of gamma. To 
get the actual geometric distance from the point to the 
separator (called the geometric margin), we need to 
divide gamma through by the magnitude of w. 

Slide 11.3.6 
The next issue is that the we have defined the margin for 
a point relative to a separator but we don't want to just 
maximize the margin of some particular single point. We 
want to focus on one point on each side of the separator, 
each of which is closest to the separator. And we want to 
place the separator so that the it is as far from these two 
points as possible. Then we will have the maximal 
margin between the two classes. 

Since we have a degree of freedom in the magnitude of w 
we're going to just define the margin for each of these 
points to be 1. (You can think of this 1 as having arbitrary 
units given by the magnitude of w.) 

You might be worried that we can't possibly know which 
will be the two closest points until we know what the 
separator is. It's a reasonable worry, and we'll sort it out 
in a couple of slides. 
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Slide 11.3.7 
Having chosen these margins, we can add the two 
equations to get that the projection of the weight vector 
on the difference between the two chosen data points has 
magnitude 2. This is obvious from the setup, but it's nice 
to see it follows. 

Then, we divide through by the magnitude of the weight 
vector and we have a simple expression for the margin, 
simply 2 over the magnitude of w. 

Slide 11.3.8 
So, we want to pick w to maximize the geometric margin, 
that is, to maximize 2 over the magnitude of w. To 
maximize this expression, we want to minimize the 
magnitude of w. If we minimize 1/2 the magnitude 
squared that is completely equivalent in effect but 
simpler analytically. 

Of course, this is not enough, since we could simply pick 
w = 0 which would be completely useless. 

Slide 11.3.9 
We'd like to find the w that specifies the maximum 
margin separator. To be a separator, w needs to classify 
the points correctly. So, we'll maximize the margin, 
subject to a set of constraints that require the points to be 
classified correctly. We will require each point in the 
training set to have a margin greater than or equal to 1. 
Requiring the margins to be positive will ensure that they 
are classified correctly. Requiring them to be greater than 
or equal to 1 will ensure that the margin of the closest 
points wil be greater than or equal to 1. The fact that we 
are minimizing the magnitude of w will force the margins 
to be as small as possible, so that in fact the margins of 
the closest points will equal 1. 
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Slide 11.3.10 
So, to summarize, we have defined a constrained 
optimization problem as shown here. It involves 
minimizing a quadratic function subject to a set of linear 
constraints. These kinds of optimization problems are 
very well studied. When the function to be minimized is 
linear, it is a particularly easy case that can be solved by a 
"linear programming" algorithm. In our case, it's a bit 
more complicated. 

Slide 11.3.11 
The standard approach to solving this type of problem is 
to convert it to an unconstrained optimization problem by 
incorporating the constraints as additional terms in the 
function to be minimized. Each of the constraints is 
multiplied by a weighting term alphai. Think of these 

terms as penalty terms that will penalize values of w that 
do not satisfy the constraints. 

Slide 11.3.12 
To minimize the combined expression we want to 
minimize the first term (the magnitude of the weight 
vector squared) but we want to maximize the constraint 
term since it is negated. Since alphai > 0, making the 

constraint terms bigger encourages them to be satisfied 
(we want the margins to be bigger than 1). 

However, the bigger the constraint term, the farther we 
move from the original minimal value of w. In general 
we want to minimize this "distortion" of the original 
problem. We want to introduce just enough distortion to 
satisfy the constraints. We'll look at this in more detail 
momentarily. 
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Slide 11.3.13 
This method we have begun to outline here is called the 
method of Lagrange multipliers and the alphai are the 

individual Lagrange multipliers. 

6.034 Notes: Section 11.4

Slide 11.4.1 
The details of solving a Lagrange multiplier problem 
are a little bit complicated. We've described the process 
in quite a bit of detail in an optional section of this 
chapter. But we are going to go through the derivation 
at a somewhat abstract level here, because it gives us 
some insights and intuitions about the resulting 
solution. 

We have an expression, L(w,b), that also involves 
parameters alpha. If we knew what the values of alpha 
should be, we could just fix them, minimize L with 
respect to w and b, and be done. The big problem is that 
we don't know what the alphas are supposed to be. 
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Slide 11.4.2 
So, we're going to start by imagining that we know what 
we want the alphas to be. We'll hold them constant for 
now, and figure out what values of w and b would 
optimize L for those fixed alphas. We can do this by 
taking the partial derivatives of L with respect to w and b 
and setting them to zero, getting two constraints. We find 
that the best value of w, w* is a weighted sum of the 
input points (in the same form as the dual perception); 
and we get an extra constraint that the sum of the alphas 
for the positive points has to equal the sum of the alphas 
for the negative points. 

Slide 11.4.3 
We can substitute this expression for the optimal w's back 
into our original expression for L, getting L as a function 
of alpha. Now we have an expression involving only 
alphas, which we don't know, and x's and y's, which we 
do know. This function is known as the dual Lagrangian. 
One of the most important things about it, from our 
perspective, is that the feature vectors only appear in dot 
products with other feature vectors. We'll come back to 
this point later on. 

Slide 11.4.4 
Now, it's time to pick the best values for the alphas. We 
do so (for reasons that you'll have to learn in a math 
class) by choosing the alpha values that maximize this 
expression. We will retain the constraints that the sum of 
the alpha values for positive points is equal to the sum of 
the alpha values for negative points, and that the alphas 
must be positive. 

Note that we will be solving for m alphas. We started 
with n+1 (the number of features, plus one) variables in 
the original Lagrangian and now we have m (the number 
of data points) variables in the dual Lagrangian. For the 
low-dimensional examples we have been dealing with 
this seems like a horrible tradeoff. We will see in the next 
lecture that this can be a very good tradeoff in some 
circumstances. 

We have two constraints, but they are much simpler. One 
constraint is simply that the alphas be non-negative---this 
is required because our original constraints were >= 

inequalities. The constraint on the alphas comes from the setting to zero the derivative of the Lagrangian with respect to the offset b. 
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This problem is not trivial to solve in general; we'll talk more about this later. For now, let us assume that we can solve it and get the 
optimal values of alphas. 

Slide 11.4.5 
In the solution, most of the alphas will be zero, 
corresponding to data points that do not provide binding 
constraints on the choice of the weights. A few of the 
data points will have their alphas be nonzero; they will all 
satisfy their constraints with equality (that is, their margin 
is equal to 1). These are called support vectors and they 
are the ones used to define the maximum margin 
separator. You could remove all the other data points and 
still get the same separator. Because the sparsity of 
support vectors is so important, this learning method is 
called a support vector machine, or SVM. 

Slide 11.4.6 
Given the optimal alphas, we can compute the weights. 
but this time, the coefficients in the sum are the Lagrange 
multipliers, the alphas, which are mostly zero. This 
means that the equation of the maximum margin 
separator depends only on the handful of data points that 
are closest to it. It makes sense that all the rest of the 
points would be irrelevant. 

We can use the fact that at the support vectors the 
constraints hold with equality to solve for the value of the 
offset b. Each such constraint can be used to solve for 
this scalar. 
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Slide 11.4.7 
We have not discussed actual algorithms for finding the 
maxima of the dual Lagrangian. It turns out that the 
optimization problem we defined is a relatively simple 
form of the general class of quadratic programming 
problems, which are known to (a) have a unique 
maximum and (b) can be found using existing algorithms. 
A number of variations on these algorithms exist but they 
are beyond our scope. 

Slide 11.4.8 

With the values of the optimal alphai's and b in hand, and 

the knowledge of how w is defined, we now have a 
classifier that we can use on unknown points. Crucially, 
notice that once again, the only thing we care about are 
the dot products of the unknown vector with the data 
points. 

Slide 11.4.9 
Here's the result of running a quadratic programming 
algorithm to find the maximal margin separator for the 
bankruptcy example. Note that only four points have non-
zero alpha's. They are the closest points to the line and 
are the ones that actually define the line. 
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Slide 11.4.10 

Let's highlight once again a few of the key points about 
SVM training and classification. First and foremost, and 
at the risk of repeating myself, recall that the training and 
classification of SVMs depends only on the value of the 
dot products of data vectors. That is, if we have a way of 
getting the dot products, the computation does not 
otherwise depend explicitly on the dimensionality of the 
feature space. 

Slide 11.4.11 

The fact that we only need dot products (as we will see 
next) means that we will be able to substitute more 
general functions for the traditional dot product operation 
to get more powerful classifiers without really changing 
anything in the actual training and classification 
procedures. 

Slide 11.4.12 

Another point to remember is that the resulting classifier 
does not (in general) depend on all the training points but 
only on the ones "near the margin", that is, those that help 
define the boundary between the two classes. 
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Slide 11.4.13 

The maximum margin constraint helps reduce the 
variance of the SVM hypotheses. Insisting on a minimum 
magnitude weight vector drastically cuts down on the 
size of the hypothesis class and helps avoid overfitting. 

Slide 11.4.14 

Finally, we should keep firmly in mind that the SVM 
training process guarantees a unique global maximum. 
And it runs in time polynomial in the number of data 
points and the dimensionality of the data. 

6.034 Notes: Section 11.5
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Slide 11.5.1 

Thus far, we have only been talking about the linearly 
separable case. What happens for the case in which we 
have a "nearly separable" problem? That is, some 
"noise points" that are bound to be misclassified by a 
linear separator. 

It is useful to think about the behavior of the dual 
perceptron In this algorithm, the value of the Lagrange 
multiplier, alphai for a point is incremented 

proportionally to its distance to the separator. In fact, if 
the point is classified correctly, no change is made to 
the multiplier. We can see that if point i stubbornly 
resists being classified, then the value of alphai will 

continue to grow without bounds. 

So, one strategy for dealing with these noise points is to 
limit the maximal value of any of the alphai's to some 

C. And, furthermore, to ignore the points with this 
maximal value when computing the margin. Clearly, if we ignore enough points, we can always get back to a linearly separable 
problem. By choosing a large value of C, we will work very hard at correctly classifying all the points, a low value of C will allow us to 
give up more easily on many of the points. 

We can get some intuition about C by thinking about the dual perceptron. Remember that in the perceptron, the magnitude of alpha is 
related to how many times a point has been misclassified. By putting a limit on alpha, we limit the effect any individual "outlier" point 
can have on the definition of the separator. We say that we are willing to live with some misclassifications. 

Slide 11.5.2 
This simple example shows how changing C causes the 
geometric margin to change. For low values of C the 
margin between positives and negatives is reduced as the 
algorithm tries to "capture" the wayward point off on the 
right. For high values of C, the separator is closer to 
where it would be if the "outlier" were not there. 
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Slide 11.5.3 

Here is an example of a separator on a simple data set 
with four points, which are linearly separable. The colors 
show the result returned by the classification function on 
each point in the space. Gray means near 1 or -1. The 
more intense the blue, the more positive the result; the 
more intense the red, the more negative. Points lying 
between the two gray lines return values between -1 and 
+1. 

Note that only three of the four samples are actually used 
to define w, the ones circled. The other plus sample 
might as well not be there; its coefficient alpha is zero. 

The samples that are actually used are the support 
vectors. 

Slide 11.5.4 

The next example is the same as the previous example, 
but with the addition of another plus sample in the lower 
left corner. There are several points of interest. 

First, the optimization has failed to find a separating line, 
as indicated by the minus sample surrounded by a red 
disk. The alphas were bounded and so the contribution of 
this misclassified point is limited and the algorithm 
converges to a global optimum. 

Second, the added point produced quite a different 
solution. The algorithm is looking for best possible 
dividing line; a tradeoff between margin and 
classification error defined by C. If we had kept a 
solution close to the one in the previous slide, the rogue 
plus point would have been misclassified by a lot, while 
with this solution we have reduced the misclassification 
margin substantially. 

Slide 11.5.5 

However, even if we provide a mechanism for ignoring 
noise points, aren't we really limited by a linear 
classifier? Well, yes. 

However, in many cases, if we transform the feature 
values in a non-linear way, we can transform a problem 
that was not linearly separable into one that is. This 
example, shows that we can create a circular separator by 
finding a linear classifier in a feature space defined by the 
squares of the original feature values. That is, we can 
obtain a non-linear classifier in the original space by 
finding a linear classifier in a transformed space. 

Hold that thought. 
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Slide 11.5.6 

Furthermore, when training samples are not separable in 
the original space they may be separable if you perform a 
transformation into a higher dimensional space, 
especially one that is a non-linear transformation of the 
input space. 

For the example shown here, in the original feature space, 
the samples all lie in a plane, and are not separable by a 
straight line. In the new space, the samples lie in a three 
dimensional space, and happen to be separable by a 
plane. 

The heuristic of moving to a higher dimensional space is 
general, and does not depend on using SVMs. 

However, we will see that the support vector approach 
lends itself to movement into higher dimensional spaces 
because of the exclusive dependence of the support 
vector approach on dot products for learning and 
subsequent classification. 

Slide 11.5.7 

First, suppose there is a function, phi, that puts the 
vectors into another, higher-dimensional space, which 
will also typically involve a non-linear mapping of the 
feature values. In general, the higher the dimensionality, 
the more likely there will be a separating hyperplane. 

By moving to a higher-dimensional feature space, we are 
also moving to a bigger hypothesis class, and so we 
might be worried about overfitting. However, because we 
are finding the maximum margin separator, the danger of 
overfitting is greatly reduced. 

Slide 11.5.8 
Even if we aren't in danger of overfitting, there might be 
computational problems if we move into higher 
dimensional spaces. In real applications, we might want 
to move to orders of magnitude more features, or even (in 
some sense) infinitely many features! We'll need a clever 
trick to manage this... 

You have learned that to work in any space with the 
support vector approach, you will need (only) the dot 
products of the samples to train and you will need the dot 
products of the samples with unknowns to classify. 

Note that you don't need anything else. So, all we need is 
a way of computing the dot product between the 
transformed feature vectors. 
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Slide 11.5.9 

Let's assume that we have a function that allows us to 
compute the dot products of the transformed vectors in a 
way that depends only on the original feature vectors and 
not directly on the transformed vectors. We will call this 
the kernel function. (This usage of the term "kernel" is 
related to kernel functions we saw in regression; they are 
both about measuring effective distances between points 
in different spaces.) 

Then you do not need to know how to do the 
transformations themselves! This is why the support-
vector approach is so appealing. The actual 
transformations may be computationally intractable, or 
you may not even know how to do the transformations at 
all, but you can still learn and classify without ever 
moving explicitly up into the high-dimensional space. 

Slide 11.5.10 
So now we need to find some phis (mappings from low to 
high-dimensional space) that have a convenient kernel 
function associated with them. The simplest case is one 
where phi is the identity function and K is just the dot 
product. 

Slide 11.5.11 
One such other kernel function is the dot product raised 
to a power; the actual power is a parameter of the 
learning algorithm that determines the properties of the 
solution. 
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Slide 11.5.12 

Let's look at a simple example of using a polynomial 
kernel. Consider the one dimensional problem shown 
here, which is clearly not separable. Let's map it into a 
higher dimensional feature space using the polynomial 
kernel of second degree (n=2). 

Slide 11.5.13 

Note that a second degree polynomial kernel is 
equivalent to mapping the single feature value x to a 
three dimensional space with feature values x2, sqrt(2)x, 
and 1. You can see that the dot product of two of these 
feature vectors is exactly the value computed by the 
polynomial kernel function. 

If we plot the original points in the transformed feature 
space (using just the first two features), we see in fact 
that the two classes are linearly separable. Clearly, the 
third feature value (equal to 1) will be irrelevant in 
finding a separator. 

The important aspect of all of this is that we can find and 
use such a separator without ever explicitly computing 
the transformed feature vectors - only the kernel function 
values are required. 

Slide 11.5.14 

Here is a similar transformation for a two dimensional 
feature vector. Note that the dimension of the 
transformed feature vector is now 6. In general, the 
dimension of the transformed feature vector will grow 
very rapidly with the dimension of the input vector and 
the degree of the polynomial. 
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Slide 11.5.15 

Let's look at the behavior of these non-linear kernels. 

The decision surface produced by the non-linear kernels 
is curved. Here is an example for which the 
(unsuccessful) attempt on the left is with a simple dot 
product; the attempt on the right is done with a 
polynomial kernel of degree 3. Note the curve in the 
solution, and note that four of the samples have become 
support vectors. 

Generally, the higher-dimensional the transformed space, 
the more complex the separator is in the original space, 
and the more support vectors will be required to specify 
it. 

Slide 11.5.16 
Another popular kernel function is an exponential of the 
square of the distance between vectors, divided by sigma 
squared. This is the formula for a Gaussian bump in the 
feature space, where sigma is the standard deviation of 
the Gaussian. Sigma is a parameter of the learning that 
determines the properties of the solution. 

Slide 11.5.17 

You can get a curved separator if you use radial basis 
functions, which give us a classifier that is a sum of the 
values of several Gaussian functions. 

Let's pause a minute to observe something that should 
strike you as a bit weird. When we used the polynomial 
kernels, we could see that each input feature vector was 
being mapped into a higher-dimensional, possibly very 
high dimensional, feature vector. With the radial-basis 
kernel each input feature vector is being mapped into a 
function that is defined over the whole feature space! In 
fact, each input feature point is being mapped into a point 
in an infinite-dimensional feature space (known as a 
Hilbert space). We then build the classifier as sum of 
these functions. Whew! 

The actual operation of the process is less mysterious 
than this "infinite-dimensional" mapping view, as we will 
see by a very simple example. 
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Slide 11.5.18 
Along the bottom you see that we're dealing with the 
simple one-dimensional example that we looked at earlier 
using a polynomial kernel. The blue points are possitive 
and the pinkish purple ones are negative. Clearly this 
arrangement is not linearly separable. 

K(xi,u) can be seen as a "Gaussian bump"; that is, as a 
function with a maximum at u = xi, that decreases 
monotonically with the distance between u and xi, but is 
always positive and goes to 0 at infinite distance. The 
parameter sigma specifies how high the bump is and how 
fast it falls off (the area under the curve of each bump is 
1, no matter what the value of sigma is). The smaller the 
sigma, the more sharply peaked the bump. 

With a radial-basis kernel, we will be looking for a set of 
multipliers for Gaussian bumps with the specified sigma 
(here it is 0.1) so that the sum of these bumps (plus an 
offset) will give us a classification function that's positive 
where the positive points are and negative where the 

negative points are. 

Slide 11.5.19 
Here is the solution obtained from an SVM quadratic 
optimization algorithm. Note that four points are support 
vectors, as expected, the points near where the decision 
boundary has to be. The farther positive points receive 
alpha=0. The value of the offset, b is also shown. 

The blue and pink Gaussian bumps correspond to copies 
of a Gaussian with standard deviation of 0.1 scaled by 
the corresponding alpha values. 
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Slide 11.5.20 
The black line corresponds to the sum of the four bumps 
(and the offset). The important point is to notice where 
this line crosses zero since that's the decision surface (in 
one dimension). Notice that, as required, it succeeds in 
separating the positive from the negative points. 

Slide 11.5.21 
Here we see a separator for our simple five point 
example computed using radial basis kernels. The 
solution on the left, for reference, is the original dot 
product. The solution on the right is for a radial basis 
function with a sigma of one. Note that all the points are 
now support vectors. 

Slide 11.5.22 

If a space is truly convoluted, you can always cover it 
with a radial basis solution with small-enough sigma. In 
extreme cases, like this one, each of the four plus and 
four minus samples has become a support vector, each 
specialized to the small part of the total space in its 
vicinity. This is basically similar to 1-nearest neighbor 
and is just as powerful and subject to overfitting. 
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Slide 11.5.23 

At this point alarm bells may be ringing. By creating 
these very high dimensional feature vectors, are we just 
setting ourselves up for severe overfitting? Intuitively, the 
more parameters we have the better we can fit the input, 
but that may not lead to better performance on new data. 

It turns out that the fact that the SVM decision surface 
depends only on the support vectors and not directly on 
the dimensionality of the space comes to our rescue. 

Slide 11.5.24 

We can estimate the error on new data by computing the 
cross-validation error on the training data. If we look at 
the linearly separable case, it is easy to see that the 
expected value of leave-one-out cross-validation error is 
bounded by the proportion of support vectors. 

If we take a data point that is not a support vector from 
the training set, the computation of the separator will not 
be affected and so it will be classified correctly. If we 
take a support vector out, then the classifier will in 
general change and there may be an error. So, the 
expected generalization error depends on the number of 
support vectors and not on the dimension. 

Note that using a radial basis kernel with very small 
sigma gives you a high expected number of support 
vectors and therefore a high expected cross-validation 
error, as expected. Yet, a radial basis kernel with large 
sigma, although of similar dimensionality, has fewer 

expected support vectors and is likely to generalize better. 

We shouldn't take this bound too seriously; it is not actually very predictive of generalization performance in practice but it does point 
out an important property of SVMs - that generalization performance is more related to expected number of support vectors than to 
dimensionality of the transformed feature space. 
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Slide 11.5.25 

So, let's summarize the SVM story. One key point is that 
SVMs have a training method that guarantees a unique 
global optimum. This eliminate many headaches in other 
approaches to machine learning. 

Slide 11.5.26 

The other advantage of SVMs is that there are relatively 
few parameters to be chosen: C, the constant used to 
trade off classification error and width of the margin; 
and the kernel parameter, such as sigma in the radial 
basis kernel. 

These can both be continuous parameters and so there 
still remains a search requiring some form of validation, 
but these are few parameters compared to some of the 
other methods. 

Slide 11.5.27 

And, last but not least, is the kernel trick. That is, that the 
whole process depends only on the dot products of the 
feature vectors, which is the key to the generalization to 
non-linear classifiers. 
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Slide 11.5.28 
The linear separator is very simple hypothesis class but it 
can perform very well on appropriate data sets. On the 
Wisconsin breast cancer data, the maximal margin 
classifier, with a linear kernel, does as well or better as 
any of the other classifiers we have seen on held-out 
data. Note that only 37 of the 512 training points are 
support vectors. 

Slide 11.5.29 
SVMs have proved useful in a wide variety of 
applications, particularly those with large numbers of 
features, such as image and text recognition problems. 
They are the method of choice in text classification 
problems, such as categorization of news articles by 
topic, or spam detection, because they can work in a 
huge feature space (typically with a linear kernel) 
without too much fear of overfitting. 
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