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Uncertainty

Let action At = leave for airport t minutes before flight
Will At get me there on time?

Problems:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (KCBS traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either
1) risks falsehood: “A25 will get me there on time”

or 2) leads to conclusions that are too weak for decision making:
“A25 will get me there on time if there’s no accident on the bridge
and it doesn’t rain and my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time
but I’d have to stay overnight in the airport . . .)
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Methods for handling uncertainty

Default or nonmonotonic logic:
Assume my car does not have a flat tire
Assume A25 works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:
A25 7→0.3 AtAirportOnTime
Sprinkler 7→0.99 WetGrass
WetGrass 7→0.7 Rain

Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability
Given the available evidence,

A25 will get me there on time with probability 0.04
Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(Fuzzy logic handles degree of truth NOT uncertainty e.g.,
WetGrass is true to degree 0.2)
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Probability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one’s own state of knowledge

e.g., P (A25|no reported accidents) = 0.06

These are not claims of a “probabilistic tendency” in the current situation
(but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence:
e.g., P (A25|no reported accidents, 5 a.m.) = 0.15

(Analogous to logical entailment status KB |= α, not truth.)
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Making decisions under uncertainty

Suppose I believe the following:

P (A25 gets me there on time| . . .) = 0.04

P (A90 gets me there on time| . . .) = 0.70

P (A120 gets me there on time| . . .) = 0.95

P (A1440 gets me there on time| . . .) = 0.9999

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Probability basics

Begin with a set Ω—the sample space
e.g., 6 possible rolls of a die.
ω ∈ Ω is a sample point/possible world/atomic event

A probability space or probability model is a sample space
with an assignment P (ω) for every ω ∈ Ω s.t.

0 ≤ P (ω) ≤ 1
ΣωP (ω) = 1

e.g., P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1/6.

An event A is any subset of Ω

P (A) = Σ{ω∈A}P (ω)

E.g., P (die roll < 4) = P (1) + P (2) + P (3) = 1/6 + 1/6 + 1/6 = 1/2
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Random variables

A random variable is a function from sample points to some range, e.g., the
reals or Booleans

e.g., Odd(1) = true.

P induces a probability distribution for any r.v. X :

P (X = xi) = Σ{ω:X(ω) =xi}P (ω)

e.g., P (Odd = true) = P (1) + P (3) + P (5) = 1/6 + 1/6 + 1/6 = 1/2

Chapter 13 8



Propositions

Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean random variables A and B:
event a = set of sample points where A(ω) = true
event ¬a = set of sample points where A(ω) = false
event a ∧ b = points where A(ω) = true and B(ω) = true

Often in AI applications, the sample points are defined

by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model
e.g., A = true, B = false, or a ∧ ¬b.

Proposition = disjunction of atomic events in which it is true
e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
⇒ P (a ∨ b) = P (¬a ∧ b) + P (a ∧ ¬b) + P (a ∧ b)
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Why use probability?

The definitions imply that certain logically related events must have related
probabilities

E.g., P (a ∨ b) = P (a) + P (b)− P (a ∧ b)

>A     B

True

A B

de Finetti (1931): an agent who bets according to probabilities that violate
these axioms can be forced to bet so as to lose money regardless of outcome.
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Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)
Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉
Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions
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Prior probability

Prior or unconditional probabilities of propositions
e.g., P (Cavity = true) = 0.1 and P (Weather = sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)

P(Weather, Cavity) = a 4× 2 matrix of values:

Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint

distribution because every event is a sum of sample points

Chapter 13 12



Conditional probability

Conditional or posterior probabilities
e.g., P (cavity|toothache) = 0.8
i.e., given that toothache is all I know

NOT “if toothache then 80% chance of cavity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P (cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,
but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P (cavity|toothache, 49ersWin) = P (cavity|toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial
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Conditional probability

Definition of conditional probability:

P (a|b) =
P (a ∧ b)

P (b)
if P (b) 6= 0

Product rule gives an alternative formulation:
P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

A general version holds for whole distributions, e.g.,
P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4× 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:
P(X1, . . . , Xn) = P(X1, . . . , Xn−1) P(Xn|X1, . . . ,Xn−1)

= P(X1, . . . ,Xn−2) P(Xn1
|X1, . . . ,Xn−2) P(Xn|X1, . . . , Xn−1)

= . . .
= Π

n
i = 1P(Xi|X1, . . . ,Xi−1)
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Inference by enumeration

Start with the joint distribution:

cavity

L

toothache

cavity

catch catch

L

toothache

L

catch catch

L

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)
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Inference by enumeration

Start with the joint distribution:

cavity

L

toothache

cavity

catch catch

L

toothache

L

catch catch

L

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:

cavity

L

toothache

cavity

catch catch

L

toothache

L

catch catch

L

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28
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Inference by enumeration

Start with the joint distribution:

cavity

L

toothache

cavity

catch catch

L

toothache

L

catch catch

L

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P (¬cavity|toothache) =
P (¬cavity ∧ toothache)

P (toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Normalization

cavity

L

toothache

cavity

catch catch

L

toothache

L

catch catch

L

.108 .012

.016 .064

.072

.144

.008

.576

Denominator can be viewed as a normalization constant α

P(Cavity|toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) + P(Cavity, toothache,¬catch)]

= α [〈0.108, 0.016〉 + 〈0.012, 0.064〉]

= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y

given specific values e for the evidence variables E

Let the hidden variables be H = X−Y−E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H =h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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Bayes’ Rule

Product rule P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

⇒ Bayes’ rule P (a|b) =
P (b|a)P (a)

P (b)

or in distribution form

P(Y |X) =
P(X|Y )P(Y )

P(X)
= αP(X|Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P (Cause|Effect) =
P (Effect|Cause)P (Cause)

P (Effect)

E.g., let M be meningitis, S be stiff neck:

P (m|s) =
P (s|m)P (m)

P (s)
=

0.8× 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ Rule and conditional independence

P(Cavity|toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . , Effectn) = P(Cause)ΠiP(Effecti|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n
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Wumpus World

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

Pij = true iff [i, j] contains a pit

Bij = true iff [i, j] is breezy
Include only B1,1, B1,2, B2,1 in the probability model
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Specifying the probability model

The full joint distribution is P(P1,1, . . . , P4,4, B1,1, B1,2, B2,1)

Apply product rule: P(B1,1, B1,2, B2,1 |P1,1, . . . , P4,4)P(P1,1, . . . , P4,4)

(Do it this way to get P (Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

P(P1,1, . . . , P4,4) = Π
4,4
i,j = 1,1P(Pi,j) = 0.2n× 0.816−n

for n pits.
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Observations and query

We know the following facts:
b = ¬b1,1 ∧ b1,2 ∧ b2,1

known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Query is P(P1,3|known, b)

Define Unknown = Pijs other than P1,3 and Known

For inference by enumeration, we have

P(P1,3|known, b) = αΣunknownP(P1,3, unknown, known, b)

Grows exponentially with number of squares!
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Using conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

KNOWN

FRINGE

QUERY
OTHER

Define Unknown = Fringe ∪Other
P(b|P1,3, Known,Unknown) = P(b|P1,3, Known, Fringe)

Manipulate query into a form where we can use this!
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Using conditional independence contd.

P(P1,3|known, b) = α
∑

unknown
P(P1,3, unknown, known, b)

= α
∑

unknown
P(b|P1,3, known, unknown)P(P1,3, known, unknown)

= α
∑

fringe

∑

other
P(b|known,P1,3, fringe, other)P(P1,3, known, fringe, other)

= α
∑

fringe

∑

other
P(b|known,P1,3, fringe)P(P1,3, known, fringe, other)

= α
∑

fringe
P(b|known,P1,3, fringe)

∑

other
P(P1,3, known, fringe, other)

= α
∑

fringe
P(b|known,P1,3, fringe)

∑

other
P(P1,3)P (known)P (fringe)P (other)

= α P (known)P(P1,3)
∑

fringe
P(b|known,P1,3, fringe)P (fringe)

∑

other
P (other)

= α′P(P1,3)
∑

fringe
P(b|known,P1,3, fringe)P (fringe)
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Using conditional independence contd.

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16 0.8 x 0.2 = 0.16

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16

P(P1,3|known, b) = α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉

≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉
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Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools
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