PROBLEM SOLVING AND SEARCH

CHAPTER 3

Chapter 3

1

Outline

S SO SO

Problem-solving agents
Problem types
Problem formulation
Example problems

Basic search algorithms

Chapter 3

3

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Chapter 3 5

Example: Romania

] Oradea
Neamt
- 87
75 .
] lasi
Arad[]
o 92
Sibiu) Fagaras
118 JVaslui
80
Timisoara Rimnicu Vilcea
]
142
Hi] Lugoj Pitesti 211
70 - 98 .
_ 3 Hirsova
dMehadia 101 S Urziceni
(i) 86
73 138 Bucharest
Dobreta [] 120 90
ICraiova Eforie

[]Giurgiu

Chapter 3 6

Problem types

Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable = conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable = contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space = exploration problem (“online”)

Chapter 3

7

Example: vacuum world

Single-state, start in #5. Solution??

1 | =) 2 =)
o8 | 2R oR | BB
3 | =4 4 =)
3 R
5 | = 6 =)
2R 3
7 | = 8 =)

Chapter 3 8

Example: vacuum world

Single-state, start in #5. Solution??

|[Right, Suck] 1 f

Conformant, start in {1,2,3,4,5,6,7,8} 3 [

e.g., Right goes to {2,4,6,8}. Solution?? e
5 [
7 [0

=)
B | %2R
=)
s
=)
oFR
=)

Chapter 3

9

Example: vacuum world

Single-state, start in #5. Solution??

[Right, Suck] 1 f
Conformant, start in {1,2,3,4,5,6,7,8} 3 [
e.g., Right goes to {2,4,6,8}. Solution?? e
|Right, Suck, Left, Suck]
5 [)

Contingency, start in #5
Murphy's Law: Suck can dirty a clean carpet

. . . 7 | =)
Local sensing: dirt, location only.

Solution??

=)
B | %2R
=)
s
=)
oFR
=)

Chapter 3

10

Example: vacuum world

Single-state, start in #5. Solution??

|[Right, Suck] 1

Conformant, start in {1,2,3,4,5,6,7,8}
e.g., Right goes to {2,4,6,8}. Solution??

w

|Right, Suck, Le ft, Suck]

Contingency, start in #5

=)
oFR
=)
2R
=)
=)

Murphy's Law: Suck can dirty a clean carpet .
Local sensing: dirt, location only.

Solution??
|Right, if dirt then Suck]

=)
B | %2R
=)
s
=)
oFR
=)

Chapter 3

11

Single-state problem formulation

A problem is defined by four items:
initial state e.g., “at Arad”

successor function S(x) = set of action—state pairs
e.g., S(Arad) = {(Arad — Zerind, Zerind), . ..}

goal test, can be
explicit, e.g., © = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > (

A solution is a sequence of actions
leading from the initial state to a goal state

Chapter 3

12

Selecting a state space

Real world is absurdly complex
= state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., "'Arad — Zerind” represents a complex set
of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

Chapter 3

13

Example: vacuum world state space graph

S S
R R
LCE@ E@DR LCE@ E@DR
ogR . ZR 3R . 3R
- S S
S S
R
LCAQ AQDR
>
S S
states??
actions??
goal test??

path cost??

Chapter 3 14

Example: vacuum world state space graph

R ELERED
(A : A \x

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??

goal test??

path cost??

Chapter 3

15

Example: vacuum world state space graph

R ELERED
(A : A \x

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal test??

path cost??

Chapter 3 16

Example: vacuum world state space graph

R ELERED
(A : A \x

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??

Chapter 3 17

Example: vacuum world state space graph

R ELERED
(A : A \x

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Chapter 3 18

Example: The 8-puzzle

7 2 4 1 2
5 6 4 5
8 3 1 7 8
Start State Goal State
states??
actions??
goal test??

path cost??

Chapter 3

19

Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate positions)

actions??
goal test??
path cost??

2 4 1 2

6 4 5

3 1 7 8
Start State Goal State

Chapter 3

20

Example: The 8-puzzle

7 2 4

5 6

8 3 1
Start State

states??: integer locations of tiles (ignore intermediate positions)

1 2

4 5

7 8
Goal State

actions’?: move blank left, right, up, down (ignore unjamming etc.)

goal test??
path cost??

Chapter 3

21

Example: The 8-puzzle

7 2 4

5 6

8 3 1
Start State

states??: integer locations of tiles (ignore intermediate positions)

1 2

4 5

7 8
Goal State

actions’?: move blank left, right, up, down (ignore unjamming etc.)

goal test??: = goal state (given)

path cost??

Chapter 3

22

Example: The 8-puzzle

7 2 4

5 6

8 3 1
Start State

states??: integer locations of tiles (ignore intermediate positions)

1 2

4 5

7 8
Goal State

actions’?: move blank left, right, up, down (ignore unjamming etc.)

goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Chapter 3

23

Tree search example

Chapter 3

26

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

>

Chapter 3 33

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4,
> (&, G

Chapter 3 34

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Chapter 3 35

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4]
(B ©
>O ©® ©® ©

Chapter 3 36

Properties of breadth-first search

Complete??

Chapter 3

37

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

Chapter 3 38

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b0+0+ 02+ ...+ b1+ 00— 1) =O(1), ie., exp. in d

Space??

Chapter 3 39

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b0+0+ 02+ ...+ b1+ 00— 1) =O(1), ie., exp. in d

Space?? O(b?!) (keeps every node in memory)

Optimal??

Chapter 3 40

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b0+0+ 02+ ...+ b1+ 00— 1) =O(1), ie., exp. in d
Space?? O(b?!) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB /sec
so 24hrs = 8640GB.

Chapter 3 41

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(D

Chapter 3 43

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(4
>(8) 6

Chapter 3 44

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 45

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 46

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 47

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 48

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 49

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 50

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

4
40

Chapter 3 51

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 52

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 53

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 54

Properties of depth-first search

Complete??

Chapter 3 55

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time??

Chapter 3 56

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

Chapter 3 57

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

Chapter 3 58

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

Chapter 3 59

