PROBLEM SOLVING AND SEARCH
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Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Chapter 3 5




Example: Romania
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Problem types

Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable = conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable = contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space = exploration problem ( “online” )
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Example: vacuum world

Single-state, start in #5. Solution??
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Example: vacuum world

Single-state, start in #5. Solution??
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Conformant, start in {1,2,3,4,5,6,7,8} 3 [

e.g., Right goes to {2,4,6,8}. Solution?? e
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Example: vacuum world

Single-state, start in #5. Solution??

[Right, Suck] 1 f
Conformant, start in {1,2,3,4,5,6,7,8} 3 [
e.g., Right goes to {2,4,6,8}. Solution?? e
|Right, Suck, Left, Suck]
5 [ )

Contingency, start in #5
Murphy's Law: Suck can dirty a clean carpet

. . . 7 | =)
Local sensing: dirt, location only.

Solution??
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Example: vacuum world

Single-state, start in #5. Solution??

|[Right, Suck] 1

Conformant, start in {1,2,3,4,5,6,7,8}
e.g., Right goes to {2,4,6,8}. Solution??

w

|Right, Suck, Le ft, Suck]

Contingency, start in #5

=)
oFR
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Murphy's Law: Suck can dirty a clean carpet .
Local sensing: dirt, location only.

Solution??
|Right, if dirt then Suck]
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Single-state problem formulation

A problem is defined by four items:
initial state e.g., “at Arad”

successor function S(x) = set of action—state pairs
e.g., S(Arad) = {(Arad — Zerind, Zerind), . ..}

goal test, can be
explicit, e.g., © = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > (

A solution is a sequence of actions
leading from the initial state to a goal state
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Selecting a state space

Real world is absurdly complex
= state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., "'Arad — Zerind” represents a complex set
of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
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Example: vacuum world state space graph
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states??
actions??
goal test??

path cost??
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Example: vacuum world state space graph

R ELERED
(A : A \x

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??

goal test??

path cost??
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Example: vacuum world state space graph

R ELERED
(A : A \x

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal test??

path cost??
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Example: vacuum world state space graph

R ELERED
(A : A \x

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??
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Example: vacuum world state space graph

R ELERED
(A : A \x

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt

path cost??: 1 per action (0 for NoOp)
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Example: The 8-puzzle

7 2 4 1 2
5 6 4 5
8 3 1 7 8
Start State Goal State
states??
actions??
goal test??

path cost??
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Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate positions)

actions??
goal test??
path cost??

2 4 1 2

6 4 5

3 1 7 8
Start State Goal State
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Example: The 8-puzzle

7 2 4

5 6

8 3 1
Start State

states??: integer locations of tiles (ignore intermediate positions)

1 2

4 5

7 8
Goal State

actions’?: move blank left, right, up, down (ignore unjamming etc.)

goal test??
path cost??
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Example: The 8-puzzle

7 2 4

5 6

8 3 1
Start State

states??: integer locations of tiles (ignore intermediate positions)

1 2

4 5

7 8
Goal State

actions’?: move blank left, right, up, down (ignore unjamming etc.)

goal test??: = goal state (given)

path cost??
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Example: The 8-puzzle

7 2 4

5 6

8 3 1
Start State

states??: integer locations of tiles (ignore intermediate positions)

1 2

4 5

7 8
Goal State

actions’?: move blank left, right, up, down (ignore unjamming etc.)

goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Tree search example
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

>
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4,
> (&, G

Chapter 3 34



Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
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Properties of breadth-first search

Complete??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b0+0+ 02+ ...+ b1+ 00— 1) =O(1), ie., exp. in d

Space??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b0+0+ 02+ ...+ b1+ 00— 1) =O(1), ie., exp. in d

Space?? O(b?!) (keeps every node in memory)

Optimal??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b0+0+ 02+ ...+ b1+ 00— 1) =O(1), ie., exp. in d
Space?? O(b?!) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB /sec
so 24hrs = 8640GB.
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(D
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search
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Depth-first search
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

4
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Properties of depth-first search

Complete??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No
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