Prolog Tutorial 1: Getting Started

In this tutorial we just want to have a first shot at running Prolog...

Typing in a Prolog program

Firstly, we want to type in a Prolog program and save it in a file, so, using a Text Editor, type in the following program:

likes(mary,food).

likes(mary,wine).

likes(john,wine).

likes(john,mary).

Try to get this exactly as it is - don't add in any extra spaces or punctuation, and don't forget the full-stops: these are very important to Prolog. Also, don't use any capital letters - not even for people's names. Make sure there's at least one fully blank line at the end of the program.

Once you have typed this in, save it as intro.pl

(Prolog files usually end with ".pl", just as C++ files end with ".cpp")

Starting Prolog

Select SWI-Prolog from the Programs menu. After a while, you should get something like the following on screen:

Welcome to SWI-Prolog (Multi-threaded, Version 5.6.39)

Copyright (c) 1990-2007 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?-

The Prolog interpreter is now running and waiting for you to type in some commands.

Loading the Program

	Writing programs in Prolog is a cycle involving

1. Write/Edit the program in a text-editor

2. Save the program in the text editor

3. Tell Prolog to read in the program

4. If Prolog gives you errors, go back to step 1 and fix them

5. Test it - if it doesn't do what you expected, go back to step 1

We've done the first two of these, so now we need to load the program into Prolog.

The program has been saved as "intro.pl", so in your Prolog window, select file -> consult and browse to “intro.pl”.

You should now have something like the following on screen.

% c:/intro.pl compiled 0.00 sec, 0 bytes

At any stage, you can check what Prolog has recorded by asking it for a listing:

| ?- listing.

likes(mary, food).

likes(mary, wine).

likes(john, wine).

likes(john, mary).

yes

| ?-

Running a query

We can now ask Prolog about some of the information it has just read in; try typing each of the following, hitting the return key after each one (and don't forget the full-stop at the end: Prolog won't do anything until it sees a full-stop)

· likes(mary,food).

· likes(john,wine).
· likes(john,food).
When you're finished you should leave Prolog by typing halt.

Facts and Rules

The Rules

The program (really, just a list of facts) we wrote in the last section was a fairly small one, so we won't be adding many rules.

You can find all possible matches to a given query by using a semi-colon (;) rather than pressing the enter key. When the response is – no, then you know that all possible matches have been exhausted.

Test your program by loading it into Prolog and running the following queries against it:

· likes(john,X).
· likes(mary,X).
· likes(Y,food).
· likes(Y,wine).
This will match the variables X and Y to the arguments available in the list of facts in your .pl file. In Prolog, variables start with a capital letter and domain values are lower case. Prolog is case-sensitive.

The difference between facts and rules is that rules are conditional, and use Prolog's "if" operator.

For the moment, we'll just be using three operators in Prolog:

	Operator
	Meaning

	:-
	if

	,
	and

	;
	or

Open the file in the text editor and try adding in rules to express the following:

· John likes anything that Mary likes
Phrase this as: John likes something if Mary likes something

Likes(john,X) :- likes(mary,X). Now you try . . .

· John likes anyone who likes wine
Phrase this as: John likes someone if that someone likes wine

· John likes anyone who likes themselves

Do these one at a time, testing the above queries each time.

The Family Tree Example

Suppose that we want to represent a family tree, so that we can ask questions like "is John related to ...", or "list all John's sisters" and so on.

The basic entities will be people; the properties we will want to look at will be father, mother, brother, sister, We choose three basic predicates, male, female and parent, which will describe a family by a series of facts. Male and female have arity 1 (take 1 argument), while parent has arity 2 (takes 2 arguments). These may be expressed as male/1 or parent/2.
Take the following family tree as an example:

 James I

 |

 |

 +----------------+-----------------+

 | |

 Charles I Elizabeth

 | |

 | |

 +----------+------------+ |

 | | | |

 Catherine Charles II James II Sophia

 |

 |

 |

 George I

In Prolog we represent this as:

 % male(P) is true when P is male

 male(james1).

 male(charles1).

 male(charles2).

 male(james2).

 male(george1).

 % female(P) is true when P is female

 female(catherine).

 female(elizabeth).

 female(sophia).

 % parent(C,P) is true when C has a parent called P

 parent(charles1, james1).

 parent(elizabeth, james1).

 parent(charles2, charles1).

 parent(catherine, charles1).

 parent(james2, charles1).

 parent(sophia, elizabeth).

 parent(george1, sophia).

Start a new file in your text editor (call it "family.pl"), and copy and paste the above program into it.

We can now formulate some queries (try entering these yourself):

· Was George I the parent of Charles I?
Query: parent(charles1, george1).
· Who was Charles I's parent?
Query: parent(charles1, Parent).

· Who were the children of Charles I?
Query: parent(Child, charles1).

Try adding the following rules to the program, and check the results:

· M is the mother of P if she is a parent of P and is female

· F is the father of P if he is a parent of P and is male

· X is a sibling of Y if they both have the same parent.

Remember that "and" in Prolog is represented using a comma. Also, the connection between predicates should be made by sharing variables (and not by embedding one predicate inside another).

Now try some of the practical exercises.

