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Abstract

From a Computer Science and Artificial Intelligence perspec-
tive, Robotics often appears as a collection of often disjoint,
sometimes antagonistic sub-fields. The lack of a coherent and
unified presentation of the field negatively impacts teaching,
especially to undergraduates. The paper presents an alter-
native synthesis of the various sub-fields of Artificial Intel-
ligence robotics, and shows how these traditional sub-fields
fit in to the whole. Finally, it presents a curriculum based on
these ideas.

Introduction
Modern Artificial Intelligence Robotics education treats the
field as a collection of overlapping subfields. An exami-
nation of the current robotics textbooks (McKerrow 1991;
Arkin 1998; Dudek & Jenkin 2000; Murphy 2000; Niku
2001, e.g.) indicates that these subfields are: traditional
Planning based robotics, Behavior Based robotics, Proba-
bilistic robotics, Mobile robotics, and Engineering robotics.
Reading these texts gives the impression that each of these
fields is overlapping, yet distinct, except for Engineering
robotics, which most Computer Science/Artificial Intelli-
gence instructors consider to be an entirely separate field.

This fragmentation of fields likely derives from the some-
times malignant relations between the fields as they com-
peted for primacy. “The whole idea of plan execution and
the runtime maintenance of something called a ’plan’ is mis-
guided.” (Brooks 1986) “This development follows a much
broader trend in mobile robotics, where probabilistic tech-
niques are commonly the method of choice over more ad
hoc approaches, such as behavior-based techniques.” (Thrun
2002) While such competition is natural in a research set-
ting, it makes it difficult to present these multiple fields co-
herently. Exacerbating the situation, Robotics instructors
tend to borrow the tendency from Artificial Intelligence in-
structors of presenting topics chronologically according to
historical development. This approach, while interesting to
practitioners, fails to put the areas in theirtechnicalcontext.

This paper argues for a perspective that unifies all the
competing Robotics sub-fields into a single framework for
instruction. It results in a more natural order of topics and
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emphasizes their relations rather than differences. The orga-
nizing principle is that robotic systems are best understood
as layers of abstractions over input and output channels.

Layers of Abstraction
The application of layers of abstraction in Computer Sci-
ence is a well known technique used either prescriptively to
coordinate standards development, or descriptively to make
sense of complicated processes and ease comparison of ap-
parently conflicting ideas. The classic example of the former
is the ISO network layer system (International Organization
for Standardization 1994) which specifies an organization
for computer networking. On the other hand, layers of ab-
straction are used as a general guideline for the understand-
ing of complicated systems throughout Computer Science
and Engineering, such as the organization of computer hard-
ware, operating systems or large pieces of software. This
technique is also handy for understanding robotics systems.

Layers of abstraction are a natural way to characterize In-
telligent Robotics, in which low level perceptions are con-
verted to high level actions and back down to low-level
motor movements. Every system does this by: processing
multiple sensor inputs; combining the input into increas-
ingly higher levels of abstraction until an action decision can
be made; and breaking down the decision into increasingly
more specific information until it can be executed as motor
commands. Intelligent Robotics as a field is best seen as two
information channels (input and output) crossing multiple
layers of abstraction from physical signals to sophisticated
symbols. All of the major paradigms fit into and can be in-
terrelated by this paradigm. Figure 1 shows the framework
presented here with two channels and the layers of abstrac-
tion through which information is processed. The top row is
the input channel, starting with physical signals on the left,
and passing through multiple abstractions as it moves to the
right. The bottom row is the output channel, moving from
high level symbols on the right to motor signals on the left.
Each input channel can be made up of multiple pathways
along which individual pieces of information can travel. For
instance, input from multiple sensors would all be in the in-
put channel, but until they are fused, they would be along
multiple pathways. All of the common robot architectures
can be see in this view as variations on how many layers of
abstraction are passed through, and at which layer (or lay-
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Figure 1: The Layers of Abstraction framework.
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Figure 2: Information flow in Braitenberg Vehicles.

ers) informationcrosses overfrom the input channel to the
output channel.

The Layers

Figure 1 describes five distinct layers. Because this model
is descriptive there is some room for adjustment in both the
numbers of layers and where they are divided. These partic-
ular layers were identified because they correspond to major
robotic architectures in the literature and have proved useful
in teaching.

The lowest layer is the Signal Layer. Information at this
layer takes the form of electrical impulses from sensors and
to motors. While all electronic robots have activity at this
layer (otherwise they would never move), few perform any
crossover from input to output at this layer. The classic ex-
ception to this is the set of Braitenberg Vehicles (Braiten-
berg 1984) which directly connect sensors to motors. Figure
2 shows the information flow in the framework of a Braiten-
berg Vehicle.

The next layer is the Information Layer, where input and
output is converted between electric current and information
on the robot and its environment. At this layer, in the input
channel, the electrical signals are converted to bits in RAM.
The input is also often processed to the extent that some rel-
ative position information is identified. In the output chan-
nel, the information layer performs kinematic analyses to
convert desired physical positions into motor positions and
thus electrical outputs. It is at this layer where most of what
would be called Engineering robotics takes place (Figure 3).

Sensor inputs are used the generate desired robot positions
which are converted to motor movements, such as a camera
directing an articulated arm to grasp an object.

In the attribute layer the input channel generalizes the in-
formation input by recognizing simple environmental states
such asobstacle-detectedor goal-detected. These often in-
tegrate sensor information over short periods of time from
multiple sensors. In the output channel collections of possi-
ble actions are weighed, an action is selected, resulting in a
desired physical position of the robot. The attribute layer is
where most of the action takes place in Behavior-Based ar-
chitectures (Figure 4). Collections of independent modules
fuse input to recognize simple world states and make action
recommendations, which are then selected from to result in
a new desired robot position.

In the Model Layer, the input channel builds explicit mod-
els of the external world. The models built can have vary-
ing degrees of abstraction. For example, probabilistic oc-
cupancy grid maps are low level abstractions, as they make
no attempt to cluster the occupied cells into objects. To-
pographical maps are higher level because they model the
relations between objects and locations. Higher level ab-
stract models are built describing the environment in terms
of languages such as predicate logic. In the output channel
is where planning takes place. The system reasons about
the models to find a plan to satisfy a goal. Traditional
planning based systems perform most of their computation
at the model layer (figure 5). From the map models, low
level planning (i.e. path planning) can occur. Often instead



Action
Selection

Goal
Selection

Agent
Modeling

Model Lifetime

Kinematics Planning

Input Channel

Output Channel

AttributeInformation

Motor

Binary Detection

Signal

Sensor and
Logic

Maps

Figure 3: Information flow in Engineering robots.
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Figure 4: Information flow in Behavior-Based robots.

of path planning, the robot behaves reactively toward that
model, skipping the planning part altogether (Figure 6).

Up to this point in all of the paradigms presented, input
information is abstracted up to some layer where it crosses
over to the output channel and converted to motor com-
mands. There is no reason that information cannot cross
from input channel to output channel at multiple layers. This
is exactly what happens in the Planning/Behavior Hybrid
systems. In these systems, longer term information is mod-
eled and planned over, which is used to direct the reactive
decisions being made in the attribute layer (figure 7).

In the top layer, the Lifetime Layer, decisions are made
about the longer term behavior of the robot. It is here that
other agents are modeled in order to coordinate collective
behavior, and the robots are able to consider what tasks they
will pursue over their lifetime.

In general, as we move from left to right in the input chan-
nel, the amount of state required in the layer increases, and
the time window over which that state integrates also in-
creases. For instance, when comparing the input process-
ing at Attribute and the Model Layers, processing at the At-
tribute Layer is both less intense than at the Model Layer
and it requires fewer input samples in order to generate out-
put. The Model Layer needs to integrate many input sam-
ples before it can build a model suitable for use in decision
making. At the same time, moving from left to right, the
number of pathways used in the input channel decreases as
information is consolidated into the abstractions. This pro-
cess reverses as information travels from right to left down

the output channel.

The Curriculum
The two channel layered model described above suggests
a particular curriculum based of alternately presenting the
workings of each layer followed by one or two example ar-
chitectures that focus on that layer. This enables the stu-
dents to implement an example of that architecture on a
robot suited to that layer. We have developed this curricu-
lum in a four hour per week robotics course taken primarily
by Senior Computer Science majors who have not necessar-
ily taken an Artificial Intelligence course. In this course we
emphasize how each robot architecture relates to the others
in the context of the layered model.

For the Signal Layer, we present the basic operation of
the sensors and electric motors found on most robots. As an
example robot architecture, we present Braitenberg’s archi-
tecture as described in Vehicles, chapters one through five
(Braitenberg 1984). The students can experiment directly
with these ideas using simple commercial robots such as the
BYO-bot (Miller 2003). The BYO-bot does provide some
of the standard functions of the Braitenberg Vehicles, but
are not programmed by the student directly connecting sen-
sors and motors with wires, and are limited in the number of
ways it can be programmed. To remedy this, we designed
a similar low-cost robot that the students can program by
connecting wires. The sensors and motors have pluggable
connectors into which the students can insert wires to attach
the sensors to the motors so that they resemble the diagrams
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Figure 5: Information flow in Planning robots.
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Figure 6: Information flow in Probabilistic robots using occupancy grid maps.
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Figure 7: Information flow in hybrid systems.



in the Vehicles book. Our initial design included only di-
rect connections, but designs in development now also in-
clude inhibitory connections and potentiometer knobs to ad-
just connection strength.

For the Information Layer, we present the mathematical
models of Engineering Robotics, with emphasis on kinemat-
ics in the Denavit-Hartenberg system (Denavit & Hartenberg
1955) for rigid arms and extend it to the Sheth-Uicker sys-
tem (Sheth & Uicker 1971) for mobile robots. The students
perform both forward and inverse kinematics on both a rigid
arm and a mobile robot. For the rigid arm we use the Robix
Rascal (Advanced Design Inc. 2003) a rugged kit suitable
when high accuracy is not required. Typical assignments are
to pick up an object in a known location in the coordinate
system. The students then carry this over to mobile robotics
by implementing ded. reckoning on a Rug Warrior (A K Pe-
ters, Ltd. 2003). They implement a light follower, and then
return to the starting position and report the location of the
light.

In presenting the Attribute layer, we discuss basic tech-
niques for identifying properties in input streams, sensor fu-
sion, and action selection mechanisms. From this we present
behavior-based architectures, emphasizing how they handle
chaotic environments. Students implement a behavior-based
system on the Rug Warriors for a competitive or cooperative
game, such as capture-the-flag.

At the Model layer, we present the basics of a occupancy
grid map and how they are built. This is followed by to-
pographical maps, and how they could be built out of oc-
cupancy grids by identifying objects, and building Voronoi
diagrams. Then we discuss logical representations and how
they can be gathered both from properties in the identifica-
tion layer and from the maps built in the lower portions of
the model layer. For the output channel, we show how reac-
tive modules in the attribute layer can use maps like the oc-
cupancy grids. We discuss how to build Voronoi diagrams,
and use them to search for paths. Finally, we discuss plan-
ning and how that can use logical descriptions to solve hard
problems in the world. Because many of the students have
not yet taken Artificial Intelligence, we present the AI prob-
lems solely as finding paths in graphs and leave the algo-
rithmic details to the AI course. The student’s final project
assignment is to use a Khepera robot (K-Team S.A. 2003)
equipped with a gripper to move blocks. We give the stu-
dents a map, a set of built in actions and the world state, and
they solve small reasoning problems such as unblocking a
doorway.

The final few classes are left to discussion of the lifetime
layer, where the highest level operations take place. It is
at this layer that much of the cutting edge research is tak-
ing place and thus it is difficult to give a clear picture of
where these issues are headed. We typically concentrate
multi-agent systems, the coordination of robots to perform
a task, and how fully autonomous robots might select which
goals they want to pursue and which they do not.

At the conclusion of the class we can re-emphasize that
all of the styles of robotics share the same general architec-
ture, and only vary on haw many levels of abstraction are
applied and at what levels information crosses from the in-

put to the output channel. We also point out that just like
good software engineering practices, high levels of abstrac-
tion can reuse implementations of lower levels.

Discussion
The idea of abstraction in computing is not new, nor is the
bottom up approach to teaching. However, by examining
the texts currently available in robotics, it appears that un-
dergraduate robotics is rarely taught in that manner. Text-
books that focus on robotics sub-field usually ignore all of
the other sub-fields. Even books that have broad coverage,
often fail to relate the sub-fields to each other. For each ma-
jor sub-field in robotics, examining it from the perspective
of this framework provides additional insight.

At the signal layer, Braitenberg architectures are often
presented as an interesting but unrelated thought experiment
in robotics. Instead, they fit naturally into the framework
and make an excellent place to introduce robots.

Behavior-based robots have been traditionally presented
as an antidote to and a radical departure from the traditional
planning systems. According to this layered framework they
are neither unrelated nor antithetical to planning systems;
the are a difference of opinion on how much abstraction is
necessary to perform various tasks. Furthermore, the frame-
work highlights that hybrids of behavior-based and planning
architectures are a natural combination of crossing informa-
tion from the input to the output channel at multiple layers,
thus taking advantage of the time differences at the various
layers.

Mobile robotics is commonly presented as its own sub-
field, with its own kinematics and own high-level issues such
as navigation. By examining mobile robotics in terms of the
layer framework one can see that the system organizational
issues for Mobile robotics are identical to those of other
robotics systems. They can been seen as requiring slight
modifications of details, such as using a variant on the kine-
matic formulations, but otherwise are the same as stationary
articulated arms.

Advocates of Probabilistic robotics maintain that it can
bestow the fast reaction time and robustness to noise ben-
efits of Behavior-Based robotics in a more principled sys-
tem. These systems are more robust than STRIPS planning
systems because of the robustness that probability provides
compared to predicates, but much of their robustness and
fast reaction time is due to skipping the planning step al-
together. Instead they use modules at the attribute layer that
react to the probabilistic map rather than to the environment.
Thus theyowesome of their robustness to Behavior-Based
architectures.

It is common to find discussion of AI planning robotics
without any explanation of where the logic representation
comes from, or how actions output by the planner end up
as motor movements. It is similarly common to find discus-
sions of the use of topographical maps without discussion
of where they come from. In the layered model, these con-
nections are emphasized at each stage, providing the student
with the connections and context to understand these topics.

Many authors highlight differences in autonomy in vari-
ous systems as a spectrum, from fully autonomous to tele-



operated. While strictly speaking the level of autonomy is
orthogonal to the architecture, it is interesting to note that
as autonomy increases, it is always introduced at the low-
est layers of the system first. As systems become progres-
sively more autonomous, they add autonomy layer by layer
from the lower layers on the left to the higher layers on the
right. By describing the level of autonomy in this manner,
by showingwhereautonomy is added, it provides a more
specific concept than just that of a spectrum.

Finally, it is interesting to note that because this frame of
reference encompasses all of the standard robotics sub-fields
it can be interesting to a researcher as an evaluation tool of
the claims of novel architectures. By examining new propos-
als from the perspective of this framework, a researcher can
determine relations to existing systems and evaluate unique-
ness claims.

Conclusion
This paper presented and argued in favor of a perspective for
teaching robotics that looks at the problem as a two-channel
set of layers of abstraction. This perspective is useful for
teaching an undergraduate course that focuses on the broad
spectrum of subfields in robotics. It covers all of the major
issues with the advantage that it unifies them, and puts them
in context of each others, and removes possible skew from
historical developments.
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