
Neural Networks

1. Decision trees are nice good simple learners, but they lack those fuzzy properties that we want to have. Where are
those probabilities?

2. Another important category of learning techniques is neural networks. We’ll look at are particular example of those
called feed-forward back propagation of error. They:

(a) Are supervised

(b) Use real-valued inputs

(c) Use real-valued outputs

3. The I/O is:

(a) Input: a vector of numbers (often normalized)

(b) Putput: a vector of numbers.

4. Background

(a) Neural Network (NN)is an unfortunate name. They are really a distributed statistic function approximator with
gradient descent learning.

(b) NN gets its name because the people who invented them were using inspiration from the brain in order to design
them.

(c) It wasn’t until the 90s that we realized the full extent of its capabilities and limitations.

(d) Because of their inspiration, it is often helpful to take a moment and describe how the brain works

i. The brain is made up of neurons
ii. Neurons consist of: A cell body, An axon(s), Dendrites
iii. Picture should be here.
iv. Sum up inputs until it fires.

(e) Many kinds o neural networks. We’ll look at the Perceptron first.

5. Perceptrons

(a) A perceptron is like a single neuron simulator.

1



...
...

(b) Activation function

(c)
∑

i wijIi

(d) This puts a hyperplane through the input space, classifying some inputs as 1, and the rest as zero.

(e) Picture here

(f) Feed some input to the network. Compare that input to what we know the value should have been. change the
weights in such a way that the next time the network will output the correct answer.

(g) Err = Tj −Oj

(h) wij = wij + α× Ii × Errj

(i) For any function that is linearly separatable, this will learn the correct function. Most things are NOT linear
separatable uh oh. see xor.

(j) With and, or, not we could chain them together to build a circuit that could calculate anything. But how would
we learn?

6. Backpropagation w/ Gradient Descent

(a) We need to create a multi-layer netwaork, and come up with a learning rule for it

(b) 2 layers will be enough (although the proof is complicated)

(c) Basic Plan

i. treat the network as a function
ii. Treat the error of the network as a function
iii. Make sure the error function is always positive
iv. find the slope of the error function
v. Change the weights of the network so that the value of the error is reduced

Ok = f(
∑

j

wjkf(
∑

i

wijIi))

(d) f is some step-like function. must be continuously differentiable.

(e) picture here

(f) f(x) = 1
1+e−x , f ′(x) = f(x)(1− f(x))

(g) E = (T −O)2 Why squared?

2



(h) we want to change the weights to minimize the errors: take the partial derivative w/r/t the weight we want to
change. Assume we’re trying to change the value of some weight wbc in the outer layer.

Let:

Nk =
∑

j

wjkf(
∑

i

wijIi)

Mj =
∑

i

wijIi

E =
1
2

∑
k

(Tk −Ok)2

=
1
2

∑
k

(Tk − f(
∑

j

wjkf(
∑

i

wijIi)))2

∂E

∂wbc
=

∂

∂wbc

1
2

∑
k

(Tk − f(Nk))2

Since the partial is w/r/t wbc, we ignore all terms in the sum except those with wbc

=
∂

∂wbc

1
2
(Tc − f(Nc))2

= (Tc − f(Nc))
∂

∂wbc
(Tc − f(Nc))

= −(Tc − f(Nc))
∂

∂wbc
f(Nc)

= −(Tc − f(Nc))f ′(Nc)
∂

∂wbc

∑
j

wjcf(Mj)

again, we ignore all terms in the sum exepct those with wbc

= −(Tc − f(Nc))f ′(Nc)
∂

∂wbc
wbcf(Mb)

= −(Tc − f(Nc))f ′(Nc)f(Mb)

(i) Since we want to change the weight in the direction opposite the gradient, our final update rule for outer weight
wbc is:

wbc ← wbc + α(Tc − f(Nc))f ′(Nc)f(Mb)

3



(j) Now, assume we want to change a weight wab in the hidden layer.

∂E

∂wab
=

∂

∂wab

1
2

∑
k

(Tk − f(Nk))2

= −
∑

k

(Tk − f(Nk))f ′(Nk)
∂

∂wab
Nk

= −
∑

k

(Tk − f(Nk))f ′(Nk)
∂

∂wab

∑
j

wjkf(
∑

i

wijIi)

ignoring terms in sum that don’t contain wab

= −
∑

k

(Tk − f(Nk))f ′(Nk)
∂

∂wab
wbkf(

∑
i

wibIi)

= −
∑

k

(Tk − f(Nk))f ′(Nk)wbkf ′(Mb)
∂

∂wab

∑
i

wibIi

ignoring terms in sum that don’t contain wab

= −
∑

k

(Tk − f(Nk))f ′(Nk)wbkf ′(Mb)
∂

∂wab
wabIi

= −
∑

k

(Tk − f(Nk))f ′(Nk)wbkf ′(Mb)Ia

(k) Since we want to change the weight in the direction opposite the gradient, our final update rule for hidden weight
wab is:

wab ← wab + α
∑

k

(Tk − f(Nk))f ′(Nk)wbkf ′(Mb)Ia

4


