1. BBayesean “Learning”
2. Decision Trees

) Strictly speaking, DT is not an ML algorithm. Its a decision tool, for which we have algorithms
) Type is (typically) supervised, set based, classifier that uses both data and parameters.
(¢) Training input: state vector, plus label.
(d) Testing input: state vector
) Testing output: training label
) Start with how the tree works in testing:

i. A bunch of questions are arranged in a tree such as:

(Is theseller reIiabIe?J

@heaper than competitors’?]

No wa Samd or close~Yay
No [Fast enough?) Yes
NO Yes
No [Enough RAM?]
No Yes

anty?l

Yes

@esktop or Laptop?]

Laptop Desktop

[1sitlight?) (Do 1 have Monitor?)
N/\Yes No Yes
[No] [Yes] [Win | buy one?] Yes
No Yes

Yes

iii. Ask each question, draw answer from input, moe to next question based on answer

ii. When input comes in, start at root

iv. Each path is logical statement, where each question is a predicate in a boolean formula:
Seller(Reliable) N\ Cheaper(close) NRam(sufficient) N Waranty(yes) A\ Type(laptop) N Weight(light) — Buy(yes)

Seller(Reliable) N Cheaper(no) — Buy(no)

v. These trees are expressive (can represent any boolean statement), compact (typically smaller than truth table),
and intuitive (people use them all the time).

(g) So how do we come up with the tree?

i. Start with data (duh), labels (yes or no, 0 or 1) and the set of possible predicates.
ii. Each example will have all its values filled as in this table:

unique ID 1 2 3 ...
reliability .8 2 9 ..
price 1000 200 800...
color red blue green...
Speed 1GHz 100GHz 2GHz...
RAM 1G 5G 1G...
Waranty Yes No Yes
Desktop yes Yes Yes
Light Yes Yes Yes
Monitor No No Yes
turbo button No Yes No
Buy No No Yes...

(h) Trivial method: Build a path for each data item. No generaization to new data. Too large a tree.
(i) Concept: we want the minimal tree that still characterizes the data.

j) This is done by putting the “best” predicate at the root. A perfect predicate divides the data set into just yes
J Y P g
and just no.

(k) Most predicates are not perfect. But one idea is that better predicates are ones that best divide the data, that
divide the data into groups that are the most pure, either yes or no.

(1) But how do we measure purity of the sets? There is a way, borrowed from information theory, called Entropy.
This is measured as: E(S) = Ele —p; 1g p;, where there are ¢ outputs of the tree, in this case just 2 yes and no,
and p; is the proportion of the set of the data that are labelled 1.

(m) Example:

Day Outlook Temp Humidity Wind HoldParade

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Sunny Mild Normal Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

(table due to Mitchell, 1997).

The entropy of this set, with HoldParade as the label, is:

c

> —pilgpi

=1

= ~Duyes lg Pyes — Pno Ig Pro

9,9 5,5
14 14 14 14

=0.94

E(S)

(n) If the set is evenly divided, we get 1. if it’s pure, we get 0.
(o) Once we can measure the purity of a set, we can measure the gain of purity of slitting the set based on a predicate:

S|
5]

G(S,P)=E(S) - >

veEV(P)

E(Sy)

This says, if we have a set S and we split it with P, and P can take one of the values in the set V(P), then the
information gain of splitting the set using predicate P is the entropy of S, minus the weighted sum of the sets we
split S into.

The gain of splitting the set on predicate Humidity is:
|5
S|

G(S.H)=E(S)~ Y T E(S)

veV(P)
_ ‘Shi9h| |Snormal‘
=0.94 — 5| M&MHUTﬁ—Ewwmﬂ
:O%—Zﬂﬁhw+lE@ 1)
14 * 14 frorma
E(Shigh) = —DPyes lg Pyes — Pno lg Pno
LN
O A
=0.98
E(Snormal) = —Pyes lg Pyes — Pno lg Pno
6,6 1,1
A A (e
=0.59

7 7
H) =0.94— —0.98 + —0.
G(S, H) = 0.94 — 770.98 + 70.50

~0.155

(p) We select the predicate that gives us the highest information gain.
(@) And repeat for each of the split sets. If a set is ever pure, we stop on that branch.
(r) Some problems:

i. Very specific predicates, such as “date” split perfectly, but have no generalization power.
ii. Growing perfect trees is bad when there’s noise in the data.
iii. Continuous valued predicates require extra work.
iv. What do you do if you are missing a value in a datum?

