
Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Concurrency Control

Part 2

From Chapters 16, 17

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Outline

� Deadlock prevention and detection

� Advanced locking techniques

� Lower degrees of isolation

� Concurrency control for index structures

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Deadlock Prevention

� Assign priorities based on timestamps.
Assume Ti wants a lock that Tj holds.

� Wait-Die:

� Wound-wait:

� If a transaction re-starts, make sure it has
_________ timestamp

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Deadlock Detection

� Create a waits-for graph:

� Nodes:

� Edges:

� Periodically check for cycles in the waits-
for graph

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Deadlock Detection

Example:

T1: S(A), R(A), S(B)

T2: X(B),W(B) X(C)

T3: S(C), R(C) X(A)

T4: X(B)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Outline

� Deadlock prevention and detection

� Advanced locking techniques

� Lower degrees of isolation

� Concurrency control for index structures

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Multiple-Granularity Locks

� Hard to decide what granularity to lock

� Shouldn’t have to decide!

� Data “containers” are nested:

Tuples

Tables

Pages

Database

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Solution: New Lock Modes,

Protocol

� Allow Xacts to lock at each level, but with a

special protocol using new “intention” locks:

� Before locking an item:

� Unlock:

� SIX mode:

-- IS IX

--

IS

IX

√

√

√

√ √

√

S X

√

√

S

X

√ √

√

√

√

√ √

√

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Examples
� T1 scans R, and updates a few tuples:

� T2 uses an index to read only part of R:

� T3 reads all of R:

-- IS IX

--

IS

IX

√

√

√

√ √

√

S X

√

√

S

X

√ √

√

√

√

√ √

√

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Dynamic Databases
� If we relax the assumption that the DB is a fixed

collection of objects, even Strict 2PL will not assure

serializability:

� T1 locks all pages containing sailor records with rating =

1, and finds oldest sailor

� Next, T2 inserts a new sailor; rating = 1, age = 96.

� T2 also deletes oldest sailor with rating = 2 (age = 80),

and commits.

� T1 now locks all pages containing sailor records with

rating = 2, and finds oldest

� No consistent DB state where T1 is “correct”!

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

The Problem - Phantom

� T1 implicitly assumes that it has locked the
set of all sailor records with rating = 1.

� Assumption only holds if no sailor records are

added while T1 is executing!

� Need some mechanism to enforce this

assumption. (Index locking and predicate

locking.)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Index Locking

� If there is a dense index on the rating field

using Alternative (2), T1 should lock the index

page containing the data entries with rating =

1.

� If there are no records with rating = 1, T1 must
lock the index page where such a data entry

would be, if it existed!

� If there is no suitable index, T1 must lock all

pages, and lock the file/table to prevent new

pages from being added, to ensure that no

new records with rating = 1 are added.

r=1

Data

Index

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Outline

� Deadlock prevention and detection

� Advanced locking techniques

� Lower degrees of isolation

� Concurrency control for index structures

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Transaction Support in SQL-92

� Each transaction has an access mode,
a diagnostics size, and an isolation
level.

NoNoNoSerializable

MaybeNoNoRepeatable Reads

MaybeMaybeNoRead Committed

MaybeMaybeMaybeRead Uncommitted

Phantom
Problem

Unrepeatable
Read

Dirty
Read

Isolation Level

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Outline

� Deadlock prevention and detection

� Advanced locking techniques

� Lower degrees of isolation

� Concurrency control for index structures

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Locking in B+ Trees

� How can we enable “safe” concurrent
access to index structures?

� One solution: Ignore the tree structure,
just lock pages while traversing the tree,
following 2PL.

� Problem?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Two Useful Observations

� Higher levels of the tree only direct searches

for leaf pages.

� For inserts, a node on a path from root to

modified leaf must be X-locked, only if

� (Similar point holds w.r.t. deletes.)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

A Simple Tree Locking Algorithm

� Search: Start at _____ and go _____;

repeatedly, ___ lock ___ then unlock ______

� Insert/Delete: Start at ____ and go _____,

obtaining ___ locks as needed. Once child is

locked, check if it is safe:

� If child is safe,______________________.

� Safe node:

� Inserts:

� Deletes:

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Example

ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:

1) Search 38*

2) Delete 38*
3) Insert 45*

4) Insert 25*

23

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

A Better Tree Locking Algorithm

� Search: As before.

� Insert/Delete:

� Set locks as if for search, get to leaf, and set

X lock on leaf.

� If leaf is not safe, release all locks, and

restart Xact using previous Insert/Delete

protocol.

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Example

ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:

1) Delete 38*

2) Insert 25*
4) Insert 45*

5) Insert 45*,
then 46*

23

