
1

1

IT420: Database Management and
Organization

Managing Multi-user
Databases

(Chapter 9)

Kroenke, Database Processing 2

PHP Miscellaneous

� $db->insert_id

� Retrieves the ID generated for an
AUTO_INCREMENT column by the previous
INSERT query

� Return value:

� The ID generated for an AUTO_INCREMENT
column by the previous INSERT query on success

� 0 if the previous query does not generate an
AUTO_INCREMENT value

� FALSE if no MySQL connection was established.

Kroenke, Database Processing 3

Goals

� Database Administration

� Concurrency Control

Kroenke, Database Processing 4

Database Administration

� All large and small databases need database
administration

� Barber Shop database (small DB)

� Large, multi-user DB

2

Kroenke, Database Processing 5

DBA Tasks

� Managing database structure

� Controlling concurrent processing

� Managing processing rights and responsibilities

� Developing database security

� Providing for database recovery

� Managing the DBMS

� Maintaining the data repository

� Who do people blame if something goes wrong?
Kroenke, Database Processing 6

Managing Database Structure

� Participate in database and application
development

� Facilitate changes to database structure

� Maintain documentation

Kroenke, Database Processing 7

DBA Tasks

� Managing database structure

� Controlling concurrent processing

� Managing processing rights and responsibilities

� Developing database security

� Providing for database recovery

� Managing the DBMS

� Maintaining the data repository

Kroenke, Database Processing 8

Concurrency Control

� Concurrency control: ensure that one
user’s work does not inappropriately
influence another user’s work

3

Kroenke, Database Processing 9

Atomic Transactions

� A transaction, or logical unit of work (LUW),
is a series of actions taken against the database
that occurs as an atomic unit

� Either all actions in a transaction occur - COMMIT

� Or none of them do – ABORT / ROLLBACK

Kroenke, Database Processing 10

Errors Introduced Without
Atomic Transaction

Kroenke, Database Processing 11

Errors Prevented With
Atomic Transaction

Make changes
permanent

Undo
changes

Kroenke, Database Processing 12

Class Exercise

� Example of transaction in the Online Mids
Store Application – submit order

4

Kroenke, Database Processing 13

Other Transaction Examples?

Kroenke, Database Processing 14

Concurrent Transaction

� Concurrent transactions: transactions
that appear to users as they are being
processed at the same time

� In reality, CPU can execute only one
instruction at a time
� Transactions are interleaved

� Concurrency problems
� Lost updates

� Inconsistent reads

Kroenke, Database Processing 15

Concurrent Transaction Processing

User 1:
Read nb Snickers (ns=500)
Reduce count Snickers by 10 (ns=490)
Write new nb Snickers back (ns=490)

User 2:

Read nb Gatorades (ng=200)
Reduce count Gatorades by 2 (ng=198)

Write new nb Gatorades back (ng=198)

User 1: Buy 10 Snicker bars
User 2: Buy 2 Gatorade bottles

Possible order of processing at DB server:

• Read nb Snickers (ns=500)
• Read nb Gatorades (ng=200)

• Reduce count Snickers by 10 (ns=490)
• Write new nb Snickers back (ns=490)
• Reduce count Gatorades by 2 (ng=198)

• Write new nb Gatorades back (ng=198)

Kroenke, Database Processing 16

Lost Update Problem

User 1:
Read nb Snickers (ns=500)
Reduce count Snickers by 10 (ns=490)
Write new nb Snickers back (ns=490)

User 2:

Read nb Snickers (ns2=500)
Reduce count Snickers by 2 (ns2=498)

Write new nb Snickers back (ns2=498)

User 1: Buy 10 Snicker bars
User 2: Buy 2 Snicker bars

Order of processing at DB server:

U1: Read nb Snickers (ns=500)
U2: Read nb Snickers (ns2=500)

U1: Reduce count Snickers by 10 (ns=490)
U1: Write new nb Snickers back (ns=490)
U2: Reduce count Snickers by 2 (ns2=498)

U2: Write new nb Snickers back (ns2=498)

5

Kroenke, Database Processing 17

DBMS’s View

U1: Read nb Snickers (ns=500)

U2: Read nb Snickers (ns2=500)

U1: Reduce count Snickers by 10
(ns=490)

U1: Write new nb Snickers back
(ns=490)

U2: Reduce count Snickers by 2
(ns2=498)

U2: Write new nb Snickers back
(ns2=498)

T1: R(Snickers)

T2: R(Snickers)

T1: W(Snickers)

T1: COMMIT

T2: W(Snickers)

T2: COMMIT

T1: R(S) W(S) Commit

T2: R(S) W(S) Commit

time

time

Kroenke, Database Processing 18

Inconsistent-Read Problem

� Dirty reads – read uncommitted data

� T1: R(A), W(A), R(B), W(B), Abort

� T2: R(A), W(A), Commit

� Unrepeatable reads

� T1: R(A), R(A), W(A), Commit

� T2: R(A), W(A), Commit

Kroenke, Database Processing 19

Class Exercise

� Transaction Steps

� Possible Schedule

� Possible Problems

� T1: Transfer money from savings to
checking

� T2: Add interest for savings account

Kroenke, Database Processing 20

Inconsistent Read Example

6

Kroenke, Database Processing 21

Resource Locking

� Locking: prevents multiple applications from
obtaining copies of the same resource when the
resource is about to be changed

Kroenke, Database Processing 22

Lock Terminology

� Implicit locks - placed by the DBMS

� Explicit locks - issued by the application
program

� Lock granularity - size of a locked resource
� Rows, page, table, and database level

� Types of lock
� Exclusive lock (X)- prohibits other users from

reading the locked resource

� Shared lock (S) - allows other users to read the
locked resource, but they cannot update it

Kroenke, Database Processing 23

Explicit Locks

User 1:
Lock Snickers
Read nb Snickers (ns=500)
Reduce count Snickers by 10 (ns=490)
Write new nb Snickers back (ns=490)

User 2:

Lock Snickers
Read nb Snickers (ns2=500)

Reduce count Snickers by 2 (ns2=498)

Write new nb Snickers back (ns2=498)

User 1: Buy 10 Snicker bars
User 2: Buy 2 Snicker bars

Order of processing at DB server:

Kroenke, Database Processing 24

Class Exercise – Place Locks

� T1: R(Sa), W(Sa), R(Ch), W(Ch), Abort

� T2: R(Sa), W(Sa), C

7

Kroenke, Database Processing 25

Serializable Transactions

� Serializable transactions:

� Run concurrently

� Results like when they run separately

� Strict two-phase locking – locking technique to
achieve serializability

Kroenke, Database Processing 26

Strict Two-Phase Locking

� Strict two-phase locking

� Locks are obtained throughout the transaction

� All locks are released at the end of
transaction (COMMIT or ROLLBACK)

Kroenke, Database Processing 27

Strict 2PL Example

� Not 2PL

� X(A)

� R(A)

� W(A)

� Rel(A)

� X(B)

� R(B)

� W(B)

� Rel(B)

� Strict 2PL

� X(A)

� R(A)

� W(A)

� X(B)

� R(B)

� W(B)

� Rel(B,A)

Kroenke, Database Processing 28

Class Exercise – Place Locks

� T1: R(Sa), W(Sa), R(Ch), W(Ch)

� T2: R(Ch), W(Ch), R(Sa), W(Sa)

8

Kroenke, Database Processing 29

Deadlock

Kroenke, Database Processing 30

Deadlock

� Deadlock: two transactions are each waiting on a
resource that the other transaction holds

� Prevent deadlocks

� Break deadlocks

Kroenke, Database Processing 31

Optimistic versus Pessimistic
Locking

� Optimistic locking assumes that no
transaction conflict will occur

� Pessimistic locking assumes that conflict
will occur

Kroenke, Database Processing 32

Optimistic Locking

9

Kroenke, Database Processing 33

Pessimistic Locking

Kroenke, Database Processing 34

Declaring Lock Characteristics

� Most application programs do not explicitly declare locks
due to its complication

� Mark transaction boundaries and declare locking
behavior they want the DBMS to use

� Transaction boundary markers: BEGIN, COMMIT, and
ROLLBACK TRANSACTION

� Advantage
� If the locking behavior needs to be changed, only the lock

declaration need be changed, not the application program

Kroenke, Database Processing 35

Marking Transaction Boundaries

Kroenke, Database Processing 36

ACID Transactions

� Transaction properties:

� Atomic - all or nothing

� Consistent

� Isolated

� Durable – changes made by commited transactions
are permanent

10

Kroenke, Database Processing 37

Consistency

� Consistency means either statement level or
transaction level consistency

� Statement level consistency: each statement
independently processes rows consistently

� Transaction level consistency: all rows impacted by
either of the SQL statements are protected from
changes during the entire transaction
� With transaction level consistency, a transaction may not see

its own changes

Kroenke, Database Processing 38

Statement Level Consistency

UPDATE CUSTOMER

SET AreaCode = ‘410’

WHERE ZipCode = ‘21218’

� All qualifying rows updated

� No concurrent updates allowed

Kroenke, Database Processing 39

Transaction Level Consistency

Start transaction

UPDATE CUSTOMER

SET AreaCode = ‘425’

WHERE ZipCode = ‘21666’

….other transaction work

UPDATE CUSTOMER

SET Discount = 0.25

WHERE AreaCode = ‘425’

End Transaction
The second Update might not see the changes it

made on the first Update Kroenke, Database Processing 40

ACID Transactions

� Atomic

� Consistent

� Isolated

� Durable

11

Kroenke, Database Processing 41

Inconsistent-Read Problem

� Dirty reads – read uncommitted data
� T1: R(A), W(A), R(B), W(B), Abort

� T2: R(A), W(A), Commit

� Unrepeatable reads
� T1: R(A), R(A), W(A), Commit

� T2: R(A), W(A), Commit

� Phantom reads
� Re-read data and find new rows

Kroenke, Database Processing 42

Isolation

� SQL-92 defines four transaction isolation
levels:
� Read uncommitted

� Read committed

� Repeatable read

� Serializable

Kroenke, Database Processing 43

Transaction Isolation Level

Kroenke, Database Processing 44

Cursor Type

� A cursor is a pointer into a set of records

� It can be defined using SELECT statements

� Four cursor types
� Forward only: the application can only move forward through

the recordset

� Scrollable cursors can be scrolled forward and backward
through the recordset
� Static: processes a snapshot of the relation that was taken when

the cursor was opened

� Keyset: combines some features of static cursors with some
features of dynamic cursors

� Dynamic: a fully featured cursor

� Choosing appropriate isolation levels and cursor types
is critical to database design

