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IT420: Database Management and 
Organization 

Managing Multi-user 
Databases

(Chapter 9)  
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PHP Miscellaneous

� $db->insert_id

� Retrieves the ID generated for an 
AUTO_INCREMENT column by the previous 
INSERT query

� Return value:

� The ID generated for an AUTO_INCREMENT 
column by the previous INSERT query on success

� 0 if the previous query does not generate an 
AUTO_INCREMENT value

� FALSE if no MySQL connection was established. 
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Goals 

� Database Administration 

� Concurrency Control 
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Database Administration

� All large and small databases need database 
administration

� Barber Shop database (small DB)

� Large, multi-user DB
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DBA Tasks

� Managing database structure

� Controlling concurrent processing

� Managing processing rights and responsibilities

� Developing database security

� Providing for database recovery

� Managing the DBMS

� Maintaining the data repository

� Who do people blame if something goes wrong?
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Managing Database Structure

� Participate in database and application 
development

� Facilitate changes to database structure

� Maintain documentation
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DBA Tasks

� Managing database structure

� Controlling concurrent processing

� Managing processing rights and responsibilities

� Developing database security

� Providing for database recovery

� Managing the DBMS

� Maintaining the data repository
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Concurrency Control

� Concurrency control: ensure that one 
user’s work does not inappropriately 
influence another user’s work
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Atomic Transactions

� A transaction, or logical unit of work (LUW), 
is a series of actions taken against the database 
that occurs as an atomic unit

� Either all actions in a transaction occur - COMMIT

� Or none of them do – ABORT / ROLLBACK
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Errors Introduced Without
Atomic Transaction
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Errors Prevented With
Atomic Transaction

Make changes 
permanent

Undo 
changes
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Class Exercise

� Example of transaction in the Online Mids
Store Application – submit order
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Other Transaction Examples?

Kroenke, Database Processing 14

Concurrent Transaction

� Concurrent transactions: transactions 
that appear to users as they are being 
processed at the same time

� In reality, CPU can execute only one 
instruction at a time
� Transactions are interleaved

� Concurrency problems
� Lost updates

� Inconsistent reads
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Concurrent Transaction Processing

User 1:
Read nb Snickers (ns=500)
Reduce count Snickers by 10 (ns=490)
Write new nb Snickers back (ns=490)

User 2:

Read nb Gatorades (ng=200)
Reduce count Gatorades by 2 (ng=198)

Write new nb Gatorades back (ng=198)

User 1: Buy 10 Snicker bars
User 2: Buy 2 Gatorade bottles

Possible order of processing at DB server:

• Read nb Snickers (ns=500)
• Read nb Gatorades (ng=200)

• Reduce count Snickers by 10 (ns=490)
• Write new nb Snickers back (ns=490)
• Reduce count Gatorades by 2 (ng=198)

• Write new nb Gatorades back (ng=198)
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Lost Update Problem

User 1:
Read nb Snickers (ns=500)
Reduce count Snickers by 10 (ns=490)
Write new nb Snickers back (ns=490)

User 2:

Read nb Snickers (ns2=500)
Reduce count Snickers by 2 (ns2=498)

Write new nb Snickers back (ns2=498)

User 1: Buy 10 Snicker bars
User 2: Buy 2 Snicker bars

Order of processing at DB server:

U1: Read nb Snickers (ns=500)
U2: Read nb Snickers (ns2=500)

U1: Reduce count Snickers by 10 (ns=490)
U1: Write new nb Snickers back (ns=490)
U2: Reduce count Snickers by 2 (ns2=498)

U2: Write new nb Snickers back (ns2=498)
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DBMS’s View

U1: Read nb Snickers (ns=500)

U2: Read nb Snickers (ns2=500)

U1: Reduce count Snickers by 10 
(ns=490)

U1: Write new nb Snickers back 
(ns=490)

U2: Reduce count Snickers by 2 
(ns2=498)

U2: Write new nb Snickers back 
(ns2=498)

T1: R(Snickers)

T2: R(Snickers)

T1: W(Snickers)

T1: COMMIT

T2: W(Snickers)

T2: COMMIT

T1: R(S) W(S) Commit

T2: R(S) W(S) Commit

time

time
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Inconsistent-Read Problem

� Dirty reads – read uncommitted data

� T1: R(A), W(A), R(B), W(B), Abort

� T2: R(A), W(A), Commit

� Unrepeatable reads 

� T1: R(A), R(A), W(A), Commit

� T2: R(A), W(A), Commit
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Class Exercise

� Transaction Steps

� Possible Schedule

� Possible Problems

� T1: Transfer money from savings to 
checking

� T2: Add interest for savings account
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Inconsistent Read Example
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Resource Locking

� Locking: prevents multiple applications from 
obtaining copies of the same resource when the 
resource is about to be changed
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Lock Terminology 

� Implicit locks - placed by the DBMS

� Explicit locks - issued by the application 
program

� Lock granularity - size of a locked resource
� Rows, page, table, and database level

� Types of lock
� Exclusive lock (X)- prohibits other users from 

reading the locked resource

� Shared lock (S) - allows other users to read the 
locked resource, but they cannot update it 

Kroenke, Database Processing 23

Explicit Locks

User 1:
Lock Snickers
Read nb Snickers (ns=500)
Reduce count Snickers by 10 (ns=490)
Write new nb Snickers back (ns=490)

User 2:

Lock Snickers
Read nb Snickers (ns2=500)

Reduce count Snickers by 2 (ns2=498)

Write new nb Snickers back (ns2=498)

User 1: Buy 10 Snicker bars
User 2: Buy 2 Snicker bars

Order of processing at DB server:
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Class Exercise – Place Locks

� T1: R(Sa), W(Sa), R(Ch), W(Ch), Abort

� T2: R(Sa), W(Sa), C
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Serializable Transactions 

� Serializable transactions:

� Run concurrently 

� Results like when they run separately

� Strict two-phase locking – locking technique to 
achieve serializability
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Strict Two-Phase Locking

� Strict two-phase locking

� Locks are obtained throughout the transaction

� All locks are released at the end of 
transaction (COMMIT or ROLLBACK)
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Strict 2PL Example 

� Not 2PL  

� X(A)

� R(A) 

� W(A)

� Rel(A)

� X(B)

� R(B)

� W(B)

� Rel(B)

� Strict 2PL 

� X(A)

� R(A) 

� W(A) 

� X(B)

� R(B)

� W(B)

� Rel(B,A)
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Class Exercise – Place Locks

� T1: R(Sa), W(Sa), R(Ch), W(Ch)

� T2: R(Ch), W(Ch), R(Sa), W(Sa)
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Deadlock
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Deadlock 

� Deadlock: two transactions are each waiting on a 
resource that the other transaction holds

� Prevent deadlocks

� Break deadlocks
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Optimistic versus Pessimistic
Locking

� Optimistic locking assumes that no 
transaction conflict will occur

� Pessimistic locking assumes that conflict 
will occur
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Optimistic Locking
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Pessimistic Locking
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Declaring Lock Characteristics

� Most application programs do not explicitly declare locks
due to its complication

� Mark transaction boundaries and declare locking 
behavior they want the DBMS to use

� Transaction boundary markers: BEGIN, COMMIT, and 
ROLLBACK TRANSACTION

� Advantage
� If  the locking behavior needs to be changed, only the lock 

declaration need be changed, not the application program
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Marking Transaction Boundaries
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ACID Transactions

� Transaction properties:

� Atomic - all or nothing

� Consistent

� Isolated

� Durable – changes made by commited transactions 
are permanent
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Consistency

� Consistency means either statement level or 
transaction level consistency

� Statement level consistency: each statement 
independently processes rows consistently

� Transaction level consistency: all rows impacted by 
either of the SQL statements are protected from 
changes during the entire transaction
� With transaction level consistency, a transaction may not see 

its own changes
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Statement Level Consistency

UPDATE   CUSTOMER

SET AreaCode = ‘410’

WHERE   ZipCode = ‘21218’

� All qualifying rows updated

� No concurrent updates allowed
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Transaction Level Consistency

Start transaction

UPDATE   CUSTOMER

SET AreaCode = ‘425’

WHERE   ZipCode = ‘21666’

….other transaction work

UPDATE   CUSTOMER

SET          Discount = 0.25

WHERE   AreaCode = ‘425’

End Transaction
The second Update might not see the changes it 

made on the first Update Kroenke, Database Processing 40

ACID Transactions

� Atomic

� Consistent

� Isolated

� Durable
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Inconsistent-Read Problem

� Dirty reads – read uncommitted data
� T1: R(A), W(A), R(B), W(B), Abort

� T2: R(A), W(A), Commit

� Unrepeatable reads 
� T1: R(A), R(A), W(A), Commit

� T2: R(A), W(A), Commit

� Phantom reads
� Re-read data and find new rows
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Isolation

� SQL-92 defines four transaction isolation 
levels: 
� Read uncommitted

� Read committed

� Repeatable read

� Serializable
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Transaction Isolation Level
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Cursor Type

� A cursor is a pointer into a set of records

� It can be defined using SELECT statements

� Four cursor types
� Forward only: the application can only move forward through 

the recordset

� Scrollable cursors can be scrolled forward and backward 
through the recordset
� Static: processes a snapshot of the relation that was taken when 

the cursor was opened

� Keyset: combines some features of static cursors with some 
features of dynamic cursors

� Dynamic: a fully featured cursor

� Choosing appropriate isolation levels and cursor types 
is critical to database design 


