SQL Views Lab
This lab should get you familiarized with creating and using views. We will see more examples of views in the future, when we’ll create triggers, and then when we’ll talk about database security. We will use SQL Server for this lab.
Submission requirements: Submit a hard copy of answers for exercises 7 to 11. Due date: next Tuesday, 28 February 2006, before lab.

Preliminaries:
1. Download the sqlserver_arena.sql file.

2. Open the SQL Server-> Tools->Query Analizer.

3. Open the downloaded file. Study the content. Execute the statements in the file by click-ing on the ‘arrow’ button.
4. You should be able to view the tables you created in the object browser (Tools->Object Browser->Show and then select your database from the list of databases shown in the Object Browser).

The tables created have the following schemas (with the primary keys underlined):

Activities (ActivityID, ActivityName)

Performers (PerformerID, PerformerName, Street, City, State, Zip, ActivityID)

Arenas (ArenaID, ArenaName, City, ArenaCapacity)

Concerts (PerformerID, ArenaID, ConcertDate, TicketPrice)

5. View the rows in the tables: right click on table or write and execute SQL queries to select everything from tables.
Exercises:

Exercise 1. Write a SQL query to list all the performers’ name and the name of the activity the performer is involved in.
Exercise 2. Write a SQL statement to create a view called Act_perf based on the query in Exercise 1.

Run the SQL statement.

Check in the Object Browser that the view was created.
Rt click…Open View…show all rows. You should see the same rows as after running the query in Exercise 1.
Exercise 3. Unlike a query, a virtual table or view can be used as if it is a table in the database. Now write a SQL query against the view as if it was a table: select everything from the view.
Exercise 4. IMPORTANT: The view does not store any data. The data is stored just in the tables used in the definition of view. When a query that uses Act_perf is executed, the system first evaluates the query that defines Act_perf, and then performs further evaluation of the query that uses Act_perf.

To demonstrate this, do the following:

Insert a row in Performers table (use INSERT INTO … VALUES …).

Execute SELECT * FROM Act_perf again.

Did the results changed? Why?
Exercise 5. (Updates on views)

Run the following query:

UPDATE Act_perf

SET PerformerName = 'Harry Chapinn'

WHERE PerformerName = 'Harry Chapin'

Does the query succeed? Why?

Execute SELECT * FROM Performers and check whether the name of Harry Chapin was changed to Harry Chapinn.
One reason to use the views: Compute and Display results of computed fields as if stored in a table

Exercise 5: Write a SQL query to show the concert date, the name of the performer, and GrossIncome where GrossIncome = ticket price * arena capacity for all concerts, with results ordered by gross income from highest to lowest

Exercise 6:
a. Try to create a view based on the above query.
b. Why does it fail?
c. Fix the view definition, so you can create the view.

d. Write a query to select all the data from the view, with results ordered by GrossIncome.

One reason to use the views: Hide complexity and simplify queries when frequently using the results of a complex query.

Example: In C++, would you rather write the code to compute a square root instead of using sqrt()? Of course not, and the same idea applies to SQL. Hide complexity and present a simple “replacement” of the complex query.

Exercise 7:
Create a view called Perf_Income to show the name of the performer, the arena name, the date of the concert and total_income where total income is based the artist receiving 10% of the face value of each ticket and number of tickets sold is always considered 80% of the arena capacity

Exercise 8:

SQL has a keyword “TOP n” that allows you to display only the first n rows in the result of a select query. For example “SELECT TOP 5 FROM Performers” will display the first 5 rows from Performers table.

Write the SQL query on the Perf_Income view to show the top 8 concerts based on total income in order of highest income to lowest income for all arenas except the arena named ‘Civic Arena’ (remember that you can use “a<>b” to check that two values a and b are different).
Exercise 9: Write the SQL query to achieve the same result as above, but without using the Perf_Income view. This query should look more complicated than the query in previous exercise.
Exercise 10: Write the SQL query to find the total money made by all of the artists during all the concerts (use the view).
Exercise 11: Write the SQL statement (use the view) to update the total_income for ‘Jimmy Buffett’ to be $100,000. Run the query.
Does the query succeed? Why?

