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ABSTRACT

Peer-to-peer (P2P) systems provide a robust, scalable and
decentralized way to share and publish data. However, most
existing P2P systems only provide a very rudimentary query
facility; they only support equality or keyword search queries
over files. We believe that future P2P applications, such
as resource discovery on a grid, will require more complex
query functionality. As a first step towards this goal, we pro-
pose a new distributed, fault-tolerant P2P index structure
for resource discovery applications called the P-tree. P-
trees efficiently evaluate range queries in addition to equality
queries. We describe algorithms to maintain a P-tree under
insertions and deletions of data items/peers, and evaluate its
performance using both a simulation and a real distributed
implementation. Our results show the efficacy of our ap-
proach.

1. INTRODUCTION

Peer-to-peer (P2P) systems are emerging as a new paradigm
for structuring large-scale distributed computer systems. Some

of the key advantages of P2P systems are (a) their scalabil-
ity, due to resource-sharing among cooperating peers, (b)
their fault-tolerance, due to the symmetrical nature of peers
and lack of centralized control, and (c) their robustness, be-
cause of self-organization in the face of peer and network
failures.

Due to the above advantages, P2P systems have made
inroads as scalable content distribution networks [24, 27, 25].
Most of these systems provide one main search functionality,
namely, efficient location of data items based on a key value.
In database terms, this corresponds to supporting simple
equality selection queries on an attribute value.

In this paper, we argue for a much richer query semantics
for P2P systems. We envision a future where users will use
their local servers to publish data or services as semantically-
rich XML documents. Users can then query this “P2P data
warehouse” as if the data were stored in one huge central-
ized database system. Note that developing such a query
infrastructure goes well beyond the capabilities of current
distributed database systems [16] because of the scale, dy-
namics, and physical distribution of P2P systems [10].

As a first step towards the goal of supporting complex
queries in a P2P system, we propose a new distributed fault-
tolerant P2P index structure called the P-tree (for P2P-
tree). The P-tree is the P2P equivalent of a B4-tree, and
can efficiently support range queries in addition to equality
queries. The P-tree is designed for application scenarios
where there is one or a few data items per peer. One such

application is resource discovery in a large grid. Here each
participating grid node (peer) has a data item that describes
its available resources. Users can then issue queries against
these data items to find the grid nodes that satisfy their
resource demands. Another related application is resource
discovery for web services.

In a stable system without insertions or deletions, a P-
tree of order d provides O(logaN) search cost for equality
queries, where N is the number of data items in the system.
For range queries, the search cost is O(m + logqgN), where
m is the number of data items in the selected range. The P-
tree only requires O(d-logqaN) space at each peer, but is still
very resilient to failures of even large parts of the network.
In particular, our experimental results show that even in
the presence of many insertions, deletions and failures, the
performance of queries degrades only slightly. The paper
makes the following specific contributions:

e We introduce P-trees, a new index for evaluating equal-
ity and range queries in a P2P system (Section 3).

e We describe algorithms for maintaining P-trees in a
dynamic P2P environment, where data items/peers
may inserted and deleted frequently (Section 4).

e We show the results of a simulation study of P-trees in
a large-scale P2P network. Our results indicate that
P-trees can handle frequent data item/peer insertions
and deletions with low maintenance overhead and a
small impact on search performance. We also present
preliminary experimental results from a real (albeit
small) distributed implementation (Section 5).

2. SYSTEM MODEL AND AN EXAMPLE

In this section we define our P2P system model, and il-
lustrate it with an example.

2.1 Peers

A peer is a semi-autonomous processor that has two logi-
cal storage partitions. The first partition is used to store the
data items that a peer wishes to publish to other peers; we
call this the data partition. The second partition is “shared”
space that is used to store the distributed data structure for
speeding up the evaluation of user queries; we call this the
index partition. The peers are semi-autonomous because
they have full control over the data partition (i.e., they can
arbitrarily insert, modify or delete data items in the data
partition), while they have no control over the index parti-
tion. The content of the index partition is maintained by



the distributed indexing protocol, which we will describe in
Section 4.

2.2 Peer-to-Peer Networks

A peer-to-peer (P2P) network is a collection of peers. We
assume that there is some underlying network protocol that
can be used to send messages from one peer to another (this
protocol could be TCP for the Internet). One of the key
features of a P2P network is that peers can arrive and leave
at any time. A peer can join a P2P network by contacting
some peer that is already part of the network. A peer can
leave the network at any time without contacting any other
peer; this models peer crashes and unpredictable network
failure. We will talk in the remainder of the paper about
peers maintaining “pointers” to other peers. Our pointers
should be understood as network addresses, as we assume
that the network is completely distributed.

2.3 Data Model

For ease of presentation, we assume that the data items
conform to the relational data model. We also assume that
all the relational tuples conform to the same global schema.
Integrating different schemas is a hard and interesting prob-
lem, but is orthogonal to our indexing problem. We assume
that in the cases where peers do in fact have data conforming
to different schemas, some P2P schema mediation technique
such as [7] is used to map them into a global schema.

We target applications that have a single data item per
peer, such as resource discovery applications where each
data item in a peer describes the nature of available re-
sources in that peer. For most of this paper, we thus assume
that there is a single tuple stored in the data partition of
each peer. Our proposed techniques can be extended to the
case where multiple tuples are stored in a peer by creating a
“virtual peer” for each distinct tuple stored in a peer. Since
each virtual peer has exactly one tuple (by definition), we
can use the proposed algorithms by replacing “virtual peers”
in place of regular peers. Some performance optimizations
are also possible for virtual peers, and we return to this issue
in Section 5 in the context of our real implementation.

Our proposed techniques do not scale to a large number
of tuples per peer. Thus, to handle other applications that
fall in this part of the design space, we need to devise new
methods that will reduce the number of virtual peers in the
system. We plan to explore this issue as part of future work.

2.4 System Evaluation Model

A P2P index structure needs to support the following op-
erations: search, insertion of a data item/peer, deletion of
a data item/peer. We consider an update to be a deletion
followed by an insertion. We use the number of messages ex-
changed between peers as the primary performance metric
for the above operations, since we expect the message cost
to dominate other costs in a P2P system. This is consistent
with other published work on P2P systems (e.g., [27, 25]). A
secondary metric of interest is the amount of space required
in the index partition of each peer.

2.5 An lllustrative Example

Consider a large-scale computing grid distributed all over
the world. Each grid node has a record in its data parti-
tion that describes its available resources. The records are
tuples that conform to the following relational schema: Re-

sources(IPAddress, OSType, MainMemory, CPUSpeed, Load,
...) with IPAddress being the IP address of the grid node,
OSType indicating the operating system (such as Linux,
MACQOs, ...), MainMemory showing how much main mem-
ory is available in MB, and Load showing the current Load
on this grid node. Given this setup, a user may wish to is-
sue a query to find suitable grid nodes for a main-memory
intensive application: grid nodes with a “Linux” operating
system with more than 4GB of main memory. This could
be written as the following SQL query.

Select R.*
From Resources R
Where R.0SType = ‘‘Linux’’ and

R.MainMemory >= 4096

A naive way to evaluate this query is to contact every peer
(grid node) in the system, and select the relevant records
from each peer. However, this approach has obvious scal-
ability problems because all peers have to be contacted for
every query, even though only a few of them may have the
relevant data.

In contrast, if we have a P-tree index built on the com-
posite key (R.OSType, R.MainMemory), we can answer the
above query efficiently. (Note that the distributed P-tree
index structure will be stored in the index partitions of the
peers.) In particular, only a logarithmic number of peers
in addition to those that actually contain the desired data
items will be contacted.

From the above example, it is also easy to see how P-tree
are more efficient than P2P index structures that only sup-
port equality queries [27, 24, 25, 2]. In the above example,
index structures that only support equality queries will have
to contact all the grid nodes having “Linux” as the OSType,
even though a large fraction of these may only have main
memory less than 4GB. Another application of the P-tree
is resource discovery for web services, where the capability
of executing range queries efficiently can result in similar
performance improvements.

3. THE P-TREE INDEX

We now propose the P-tree index structure. P-trees sup-
port the same class of queries as a centralized B-+-tree index,
but are highly distributed, fault-tolerant, and scale to a large
number of peers. In a stable system without insertions or
deletions, a P-tree of order d provides O(logqN) search cost
for equality queries, where N is the number of data items
in the system. For range queries, a stable P-tree provides
a search cost of O(m + logaN), where m is the number of
data items selected in the range. Our experimental results
indicate that this search performance degrades only slightly
even in the presence of peer insertions, deletions, and fail-
ures. The space requirements for a P-tree index structure is
O(d - logaN) at each peer.

For ease of exposition, we only consider single-attribute
index keys (i.e., we do not consider composite keys). The
extension to composite keys is similar to that for a B4-tree,
and is easy to see once we introduce the P-tree. Also, like a
B+-tree, a P-tree can also be used to support prefiz matches,
and one-dimensional nearest neighbor queries. We assume
that the indexed attribute values are unique; duplicate index
values can be made unique by appending the physical id of
the peer where the duplicate value resides. We will refer to
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the value of the indexing attribute in a tuple stored at a
peer as the indez value of the peer. Finally, we assume that
each query originates in one of the peers that are already
part of the P2P network.

The rest of this section is organized as follows. We first
describe B+-trees, and argue why prior work on distributed
B+-trees cannot be used in a P2P environment. We then
present the P-tree index structure.

3.1 B+-trees

The B+-tree index [5] is widely used for efficiently eval-
uating equality and range queries in centralized database
systems. A B+-tree of order d is a balanced search tree in
which the root node of the tree has between 2 and 2d en-
tries. All non-root nodes of the tree have between d and 2d
entries. This property ensures that the height of a B+-tree
is at most [logaN'|, where N is the number of data items
being indexed. Figure 1 shows an example B+-tree of order
2.

Equality search operations in a B+-tree proceed from the
root to the leaf, by choosing the sub-tree that contains the
desired value at each step of the search. The search cost
is thus O(logaN), which is the same as the height of the
tree. Range selections are evaluated by first determining the
smallest value in the range (using equality selection), and
then sequentially scanning the B+-tree leaf nodes until the
end of the range. The search performance of range queries
is thus O(m +logqN), where m is the number of data items
selected in the query range.

Unfortunately, existing work on distributed B-+-trees is
not directly applicable in a P2P environment. To the best
of our knowledge, all such index structures [14, 17] try to
maintain a globally consistent B+-tree by replicating the
nodes of the tree across different processors. The consis-
tency of the replicated nodes is then maintained using pri-
mary copy replication. Relying on primary copy replication
creates both scalability (load/resource requirements on pri-
mary copy) and availability (failure of primary copy) prob-
lems, and is clearly not a solution for a large-scale P2P sys-
tems with thousands of peers. We thus need to relax these
stringent requirements of existing work, and P-trees are a
first attempt at a specific relaxation.

3.2 P-trees: Overview

The key idea behind the P-tree is to give up the notion
of maintaining a globally consistent B+-tree, and instead
maintain semi-independent B+-trees at each peer. Main-
taining semi-independent B+-trees allows for fully distributed
index maintenance, without any need for inherently central-
ized and unscalable techniques such as primary copy repli-
cation.

To motivate the discussion of semi-independent B+-trees,
we first introduce fully independent B+-trees in a P2P set-
ting. Fully independent trees have excessive space cost and
high maintenance overhead, but serve as a useful stepping
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stone in our discussion.

3.2.1 Fully Independent B+-trees

Each peer maintains its own independent B+-tree, and
each B+-tree is periodically updated as peers/data items
are inserted/deleted from the system. As an illustration, let
us assume that the data items with index values 5, 7, 13, 23,
29, 30, 31, 42 are stored in peers p1, p2, Ps3, P4, Ps, P6, P7, Ps,
respectively. An independent B-+-tree maintained at p; is
shown in Figure 1. In this tree, only the tuple corresponding
to the left-most leaf value (5) is actually stored at pi; the
other leaf entries are “pointers” to the peers that have the
corresponding data items.

As another illustration, the B4+-tree stored in ps is shown
in Figure 2. Here, ps views the index values as being or-
ganized on a ring, with the highest index value wrapping
around to the lowest index value. In this ring organization,
ps views the index value of its locally stored tuple (29) as the
smallest value in the ring (note that in a ring, any value can
be viewed as the smallest value). As before, only the tuple
corresponding to the left-most leaf value is actually stored
at ps, and the other leaf entries are pointers to peers that
have the corresponding data items. Note that the B+-trees
stored at the peers p; and ps are completely independent,
and have no relationship to each other except that they all
index the same values.

Since peers have independent B+-trees, they can maintain
their consistency in a fully distributed fashion. However,
this approach suffers from the following drawbacks. First,
since each peer indexes all data values, every peer has to be
notified after every insertion/deletion - which is clearly not
a scalable solution. Second, the space requirement at each
node is large - O(N), where N is the number of data items.

3.2.2 P-tree = Semi-Independent B+-trees

We now introduce the P-tree as a set of semi-independent
B+-trees. Even though the B-+-trees in a P-tree are only
semi-independent (as opposed to fully independent), they
allow the index to be maintained in a fully distributed fash-
ion. They also avoid the problems associated with fully in-
dependent B+-tree.

The key idea is the following. At each peer, only the
left-most root-to-leaf path of its corresponding independent
B+-tree is stored. Each peer then relies on a selected sub-set
of other peers to complete the remaining (non root-to-leaf
parts) of its tree.

As an illustration, consider Figure 3. The peer p;, which
stores the tuple with index value 5, only stores the root-to-
leaf path of its independent B+-tree (see Figure 1 for pi’s
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Figure 4: Full P-tree

full independent B+4-tree). To complete the remaining parts
of its tree - i.e., the sub-trees corresponding to the index
values 29 and 31 at the root node - p; simply points to the
corresponding B+-tree nodes in the peers ps and p7 (which
store the tuples corresponding to the index values 29 and 31,
respectively). Note that ps and p7 also store the root-to-leaf
paths of their independent B+-trees (see Figure 2 for ps’s
full independent B+-tree). Consequently, p; just points to
the appropriate B+-tree nodes in ps and p7 to complete its
own B+-tree.

It is instructive to note the structure of P-trees in rela-
tion to regular B+-trees. Consider the semi-independent
B+-tree at the peer p1. The root node of this tree has three
subtrees stored at the peers with values 5, 29, and 31, respec-
tively. The first sub-tree covers values in the range 5-23, the
second sub-tree covers values in the range 29-31, and the
third sub-tree covers values in the range 31-5. Note that
these sub-trees have overlapping ranges, and the same data
values (31 and 5) are indexed by multiple sub-trees. This is
in contrast to a regular B+-tree (see Figure 1), where the
sub-trees have non-overlapping ranges. We allow for such
overlap in a P-tree because this allows each peer to inde-
pendently grow or shrink its tree in the face of insertions
and deletions; this in turn eliminates the need for excessive
coordination and communication between peers.

The above structure of P-trees has the following advan-
tages. First, since each peer only stores tree nodes on the
leftmost root-to-leaf path, it stores O(logaN) nodes, where
N is the number of data items and d is the order of the P-
tree. Since each node has at most 2d entries, the total stor-
age requirement per node is O(d - logaN) entries. Second,
since each peer is solely responsible for maintaining the con-
sistency of its leftmost root-to-leaf path nodes, it does not
require global coordination among all the peers and does not
need to be notified for every insertion/deletion.

For ease of exposition, in Figure 3, we have only shown
(parts of) the semi-independent B+-trees in some of the
peers. In a full P-tree, each peer has its own root-to-leaf
path nodes, which in turn point to nodes in other peers.
The full P-tree for our example is shown in Figure 4. Note
that the values are organized as a ring because each peer
views its locally stored value as the smallest value when
maintaining its semi-independent B+-tree.

3.3 P-tree: Structure and Properties

We now formally define the structure of P-trees. We also
outline the key properties that a P-tree needs to satisfy in
order to ensure the correctness and logarithmic search per-
formance of queries. We discuss algorithms for maintaining
these properties in a fully decentralized fashion in Section 4.

3.3.1 P-tree: Structure

Consider the P-tree nodes stored in a peer p, which stores
the index value p.value. p has possibly many index nodes
corresponding to the path from the root to the leaf of its
semi-independent B+-tree. We denote the height (number
of levels) of p’s tree by p.numLevels, and use p.node[i] to
refer to the index node at level 7 in p. Each node has possibly
many entries. Each entry is the pair (value, peer), which
points to the peer peer with index value peer.value. We use
p.node[i]. numEntries to denote the number of entries in the
node at level ¢ in peer p, and we use p.nodeli][j] to refer to
the jth entry of this node. For notational convenience, we
define level 0 in a P-tree at peer p as having the d entries
(p.value, p).

As an illustration, consider the P-tree nodes of peer p; in
Figure 4. Since p1’s tree has two nodes, the height of its tree
is 2, and thus p1.numLevels = 2. The node at level 1 (the
lowest level) has 4 entries corresponding to the pairs (5, p1),
(7,p2), (13,p3), (23,p4). Thus p1.node[l].numEntries = 4,
p1.node[1][0] = (5,p1), p1.node[1][1] = (7, p2), etc.

For notational convenience, we introduce the following no-
tions. Given a peer p, we define succ(p) to be the peer p’
such that p’.value appears right after p.value in the P-tree
ring. For example, in Figure 4, succ(p1) = p2, succ(ps) =
p1, and so on. We similarly define pred(p) to be the peer p’
such that p’.value appears right before p.value in the P-tree
ring. For example, in Figure 4, pred(p1) = ps, pred(ps) =
p7, and so on.

In order to easily reason about the ordering of peers in
the P-tree ring, we introduce the comparison operator <,
where p is a peer. Intuitively, <, is a comparison opera-
tor that compares peers on the P-tree ring based on their
index values, by treating p.value as the smallest value in
the ring. For example, for the comparison operator <, we
treat ps.value as the smallest value in the ring in Figure 4.
We thus have ps <p; p7, P8 <p3 P1, P1 <p3 D2, P3 <p3 D2,
and so on. We define the operator <, similarly.

It is also useful to define the “reach” of a node at level ¢
at peer p, denoted reach(p,?). Intuitively, reach(p,?) is the
“last” peer that can be reach by following the right-most
path in the sub-tree rooted at p.node[i]. For example, in
Figure 3, reach(pl, 1) = p4 since the last entry of p1.nodel[l]
points to ps. Similarly, reach(p1,2) = p1 since the last entry
of p1.node[2] points to pr.node[l], whose last entry in turn
points to p;. We now give a formal (recursive) definition
of reach. Let lastEntry(p.nodeli]) denote the last entry
of p.node[i]. Then reach(p,0) = p, and reach(p,i + 1) =
reach(last Entry(p.node[i + 1]).peer, 7).

3.3.2 P-tree: Properties

We now define four key properties that characterize a con-
sistent (distributed) P-tree index. If a P-tree satisfies all of
the four properties at every peer, then it is called consistent;
else it is called inconsistent. Consider a set of peers P, and
a P-tree of order d.

Property 1 (Number of Entries Per Node) All non-
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root nodes have between d and 2d entries, while the root
node has between 2 and 2d entries. Formally, for all peers
p € P, the following conditions hold:

Vi < p.numLevels (p.node[i].numEntries € [d, 2d])

p.node[p.numLevels|.numEnitries € [2,2d]

The motivation for these conditions is similar to that in

B+-trees [5]. Allowing the number of entries to vary from
d to 2d for non-root nodes makes them more resilient to
insertions and deletions because the invariant will not be
violated for every insertion/deletion.
Property 2 (Left-Most Root-to-Leaf Path) This prop-
erty captures the intuition that each peer stores the nodes
in the left-most root-to-leaf path of its semi-independent
B+-tree (Section 3.2.2). In other words, the first entry of
every node in a peer p points to p. Formally, for all peers
p € P, and for all levels i € [0, p.numLevels], the following
condition holds:

p.nodelt][0] = (p.value,p)

As discussed earlier (Section 3.2.2), this condition limits

the storage requirements at each peer to be O(logaN), and
also prevents the P-tree nodes at a peer from having to be
updated after every insertion/deletion.
Property 3 (Coverage) This property ensures that all in-
dex values are indeed indexed by the P-tree; i.e., it ensures
that no values are “missed” by the index structure. In a
centralized B+-tree, this is usually not a problem. How-
ever, this becomes an issue in a distributed index structure,
where different parts of the distributed index could evolve
independently during insertions and deletions.

As an illustration of the type of problem that could occur
if the coverage property is not satisfied, consider the example
in Figure 5. Peer p; has three levels in its part of the P-
tree. Consider the second level node in p; (with entries
having index values 5, 23, 29, and 30). The sub-tree rooted
at the first entry of this node (with index value 5) is stored
in p1, and this sub-tree indexes the range 5-7. The sub-tree
rooted at the second entry of this node (with index value
23) is stored in ps and indexes the range 23-29. However,
neither of these sub-trees index the value 13. Therefore, if
a search is issued for the value 13 in pi, the index can be
used only to reach up to p2, which stores the value 7 (7 is the
largest value less than 13 that is indexed). After reaching po,
the search will have to do a sequential scan around the ring
to reach ps3 that contains the value 13. Note that although
ps is the immediate predecessor of p2 in this example, in
general, there could be many “missed” values in between ps
and ps, and the search performance can deteriorate due to

the long sequential scan along the ring (although the search
will eventually succeed).

As illustrated above, “gaps” in between adjacent sub-trees
(in the above example, the gap was the peer p3 having index
value 13) implies that search cost for certain queries can no
longer be guaranteed to be logarithmic in the number of
data items. The coverage property addresses this problem
by ensuring that there are no gaps between adjacent sub-
trees. A related issue is ensuring the the sub-tree rooted
at the last entry of each root node indeed wraps all the
way around the P-tree ring. These two properties together
ensure that every index value is indeed reachable using the
index.

Formally, let p.nodeli][j] = (val;, p;) and p.node[i|[j+1] =
(valj+1,pj+1) be two adjacent entries in the node in level i
of peer p. The coverage property is satisfied between these
two pairs of entries iff the following condition holds.

P41 S, succ(reach(p;,i — 1))

The coverage property is satisfied by the root node of a
peer p if the following condition holds. In the definition, we
let lastPeer = last Entry(p.node[p.numLevels]).peer.

D <iastPeer succ(reach(p, p.numLevels))

The coverage property is satisfied for the entire P-tree iff
the above conditions are satisfied for every pair of adjacent
entries and root nodes, for every peer in the system.
Property 4 (Separation) The coverage property discussed
above deals with the case when adjacent sub-trees are too
far apart. A different concern arises when adjacent sub-trees
overlap. As mentioned in Section 3.2.2, some overlap among
the sub-trees is possible, and this is desirable because the
sub-trees can then be independently maintained. However,
excessive overlap can compromise logarithmic search per-
formance. The separation property ensures the the overlap
between successive sub-trees is not excessive.

As an illustration of the kinds of problems that could arise
if the separation property is not enforced, consider again
Figure 5. Consider the node at the second level in p;’s part
of the tree (the index values are 5, 23, 29, and 30). The
subtree rooted at the entries 23, 29, and 30 cover the ranges
23-29, 29-30, and 30-31, respectively. Note that each of
these sub-trees only have one non-overlapping value with its
adjacent sub-tree. Due to this excessive overlap, the height
of the corresponding P-tree of order d (d = 2 in this case)
can no longer be guaranteed to be O(logaN). (Note that our
example is too small to illustrate this increase in height, so
we have just illustrated this issue by showing the excessive
overlap.) Consequently, if there is excess overlap, search
cost can no longer be guaranteed to be logarithmic in the
number of data items (although searches will still succeed).

The separation property avoids excessive overlap between
adjacent sub-trees by ensuring that two adjacent entries at
level ¢ have at least d non-overlapping entries at level ¢ — 1.
This ensures that the search cost is O(loggN). Formally, let
p.nodeli][j] = (val;, p;) and p.nodeld][j + 1] = (valjt1, pj+1)
be two adjacent entries in the node in level 7 > 0 in the index
of peer p. The separation property is satisfied between these
two pairs of entries iff the following condition holds.

pj-nodeli — 1][d — 1].peer <p; pj+1

The separation property is satisfied for the entire P-tree iff
the separation property is satisfied for every pair of adjacent
entries for every peer in the system.

Based on the above four properties, we can prove the fol-
lowing statements about P-trees.
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Lemma 1: (Correctness of Search) In a consistent P-
tree, a search for index value v succeeds iff a tuple with index
value v is stored in a peer in the system.

Lemma 2: (Logarithmic Search Performance) In a
consistent P-tree of order d with N data items, the search
cost for a range query that returns m results is O(m +
logaN).

Lemma 3: (Logarithmic Space Requirement) In a
consistent P-tree of order d with N data items, the space
requirements at each peer is O(d - logaN).

4. P-TREE ALGORITHMS

We now describe algorithms for searching and updating
P-trees. The main challenge is to ensure that a P-tree
is consistent (i.e., satisfies Properties 1 through 4 in Sec-
tion 3.3.2), even in the face of concurrent peer insertions,
deletions, and failures. Recall that centralized concurrency
control algorithms, or distributed algorithms based on pri-
mary copy replication, are not applicable in a P2P setting
because peers may enter and leave the system frequently
and unpredictably. Consequently, we need to devise fully
distributed algorithms that can maintain the consistency of
a P-tree in a large-scale P2P system.

The key idea is to allow nodes to be in a state of local
inconsistency, where for a peer p the P-tree at p does not
satisfy coverage or separation. Local inconsistency allows
searches to proceed correctly, with perhaps a slight degra-
dation in performancel) even if peers are continually being
inserted and deleted from the system. Our algorithms will
eventually transform a P-tree from a state of local inconsis-
tency to a fully consistent state, without any need for global
communication or coordination.

4.1 High-Level System Architecture

Figure 6 depicts the high-level architecture of a P-tree
component at a peer. The underlying ring structure of the
P-tree is maintained by one of the well-known successor-
maintenance algorithms from the P2P literature; in our im-
plementation we use the algorithm described in Chord [27].
Thus, the P-tree ring leverages all of the fault-tolerant prop-
erties of Chord, as summarized in the following lemma [27].
Chord Lemma: (Fault-tolerance of Ring) If we use a
successor list of length O(logN) in the ring, where N is the
number of peers, and then every peer fails with probability
1/2, then with high probability, find_successor (of a peer in
the ring) returns the closest living successor.

'We study and quantify this degradation in Section 5.

Although the underlying ring structure provides strong
fault-tolerance, it only provides linear search performance.
The logarithmic search performance of P-trees is provided
by the actual P-tree nodes at the higher levels.

The consistency of the P-tree nodes is maintained by two
co-operating processes, the Ping Process and the Stabiliza-
tion Process. There are independent copies of these two
processes that run at each peer. The Ping Process at peer
p detects inconsistencies in the P-tree nodes at p and marks
them for repair by the Stabilization Process. The Stabiliza-
tion Process at peer p periodically repairs the inconsisten-
cies detected by the Ping Process. Even though the Sta-
bilization Process runs independently at each peer, we can
formally prove that the (implicit and loose) cooperation be-
tween peers as expressed in the Stabilization Process leads
eventually to a globally consistent P-tree (see Section 4.6).

Since a P-tree can be locally inconsistent, we add a state
variable to each node entry to indicate whether that entry
is consistent or not. We use p.node[i][j].state to refer to the
state variable of the jth entry in the ith level node in peer p.
The state variable p.nodel[i][j].state can take on three val-
ues, consistent, coverage, or separation, indicating that
p.nodeli][j] is either in a consistent state, violates the cov-
erage property, or violates the separation property, respec-
tively. The state variable is updated by the Ping Process
and the Stabilization Process, and is also used by the latter.

We now describe how peers handle search, insertion of
new peers, and deletion of existing peers, and then we de-
scribe the Ping Process and the Stabilization Process. When
reading these sections, we ask the reader to note the beauty
of the conceptual separation of detecting changes, and re-
pairing the P-tree data structure. Specifically, during in-
sertions, deletions, and failures, P-trees only detect changes
and record them without repairing a possibly inconsistent P-
tree data structure — this permits us to keep the insertion
and deletion algorithms very simple (i.e., they only affect
the ring level of the P-tree). Detection of changes is con-
fined to the Ping Process which periodically runs at a peer
and only detects entries where the local P-tree data structure
is inconsistent. The Stabilization Process is the only process
that actually repairs the P-tree data structure. The Stabi-
lization Process investigates every entry that is not marked
consistent and repairs the entry such that Properties 1 to
4 in Section 3.3.2 are again satisfied.

4.2 Search Algorithm

For search queries, we assume that each query originates
at some peer p in the P2P network. The search takes as
input the the lower-bound (Ib) and the upper-bound (ub) of
the range query, and the peer where the search was orig-
inated; the pseudo-code of the algorithm is shown in Al-
gorithm 1. The search procedure at each peer is similar to
B+-trees, except that traversal from one level to the next re-
quires communication with another peer (lines 15-16). Once
the search algorithm reaches the lowest level of the P-tree,
the ring-level, it traverses the successor list until the value of
a peer exceeds ub (lines 8-13). At the end of the range scan,
a SearchDoneMessage is sent to the peer that originated
the search (line 12). Note that we ignore the state of the
entries during search.

Example: Consider the range query 30 < walue < 39
that is issued at peer p; in Figure 4. The search algorithm
first determines the largest P-tree level in p; that contains



Algorithm 1 : p.Search(int b, int up, originator)

Algorithm 2 : p.Ping()

1: // Find maximum P-tree level that contains an

2: // entry that does not overshoot 1b.

3: Find the maximum level [ such that 3 5 >0
such that p.node[l][j].value € (p.value,1b].

4: if no such level exists then

5.  if Ib < p.value < ub then

6: send p.data to originator

7:  end if

8:  if succ(p).value € (p.value, ub] then

9: // if successor satisfies search criterion
10: send Search(Ilb,ub,originator) to succ(p)
11:  else

12: send SearchDoneMessage to originator
13:  end if

14: else

15:  find maximum k such that
p.node[l][k].value € (p.value, Ib]

16:  send Search(lb,ub, originator) message
to p.nodell][k].peer

17: end if

an entry whose value is between 5 (value stored in p;) and 30
(the lower bound of the range query). In the current exam-
ple, this corresponds to the second entry at the second level
of p1’s P-tree, which points to node ps with value 29. The
search message is thus forwarded to ps. ps follows a simi-
lar protocol, and forwards the search message to pe (which
appears as the second entry in the first level of ps’s P-tree).
Since pg stores the value 30, which falls in the desired range,
this value is returned to p1; similarly, ps’s successor (pr) re-
turns its value to p1. The search terminates at p7 as the
value of its successor does not fall within the query range.

The search procedure will go down one level of the P-tree
every time a search message is forwarded to a different peer.
This is similar to the behavior of B+-trees, and guarantees
that we need at most logq N steps, so long as all entries are
consistent. If a P-tree is inconsistent, however, the search
cost may be more than logq N because Properties 1 through
4 in Section 3.3 may be violated.

Note that even if the P-tree is inconsistent, it can still
answer queries by using the index to the maximum extent
possible, and then sequentially scanning along the ring, as
illustrated in the example under Property 3 in Section 3.3.2
(note that the fault-tolerant ring is still operational even in
the presence of failures). In Section 5, we experimentally
show that the search performance of P-trees does not de-
grade much even when the tree is temporarily inconsistent.

It is important to note that every search query cannot

always be guaranteed to terminate in a P2P system. For
example, a peer n could crash in the middle of processing a
query, in which case the originator of the query would have
to time out and try the query again. This model is simi-
lar with that used in most other P2P systems [25, 27, 24].
We can prove the following property about search during
concurrent insertions and deletions.
Lemma 4: (Correctness of search) If we search for a
value v that is in the fault-tolerant ring for the entire dura-
tion of the search, either v will be found or the search will
timeout.

1: for | = 1;1 < p.numLevels;l =1+ 1 do

2 j=1

3: repeat

4: if p.nodell][j].peer has failed then

5: Remove(p.nodell], 5)

6: else

7 p.nodell][j].state =
CheckCovSep(p.nodell][j — 1], p.node[l][j])

8: j++

9: end if

10:  until j > p.node[l].numEntries

11: end for

4.3 Peer Insertions

We now consider the case where a new peer wants to join
the system. As in many P2P systems, we assume that a new
peer p indicates its desire to join the system by contacting an
existing peer. p issues a regular range query to the existing
peer in order to determine p’s predecessor, pred(p), in the
P-tree value ring. There are now three things that need to
be done to integrate the new peer p into the system. First,
p needs to be added to the virtual ring. Second, the P-tree
nodes of p need to be initialized. Finally, some of the P-
trees of existing peers may need to be updated to take into
consideration the addition of p.

In order to add a new peer to the lowest level ring, we rely
on the ring-level stabilization protocol. In order to initialize
the P-tree of a new peer p, we simply copy the P-tree nodes
from pred(p) and replace the first entry in each node with
an entry corresponding to p. Although the P-tree nodes
copied from pred(p) are likely to be a close approximation
of p’s own P-tree nodes, clearly some entries could violate
the coverage or separation properties for p, even though they
were satisfied for pred(p). The insertion algorithm adheres
to our policy of strictly separating responsibilities and leaves
marking of entries as inconsistent to the Ping Process.

Ensuring that the P-tree nodes of existing peers become
aware of the newly inserted node requires no special action.
Eventually, the Ping Process in the existing nodes will de-
tect any inconsistencies due to the newly inserted node (if
any), and will invalidate the appropriate entries. The Sta-
bilization Process at these nodes will then fix these incon-
sistencies.

4.4 Peer Deletions and Failures

In a P2P system, peers can leave or fail at any time, with-
out notifying other peers in the system. There are two main
steps involved in recovering from such failures/deletions.
The first is to update the ring, for which we rely on the stan-
dard successor maintenance protocol. The second step is to
make existing P-tree tree nodes aware of the deletion/failure.
Again, no special action is needed for this step because we
just rely on the Ping Process to detect possible inconsisten-
cies (which then get repaired using the Stabilization Pro-
cess).

4.5 The Ping Process

The Ping Process runs periodically at each peer; its pseudo-
code is shown in Algorithm 2. The Ping Process checks
whether the entries are consistent with respect to the cov-
erage and separation properties (line 7) in function Check-



Algorithm 3 : p.Stabilize()

l=1

repeat
root=p.StabilizeLevel(])
I+ +

until (root)

: p.numLevels =1 —1

ARl e

Algorithm 4 : p.StabilizeLevel(int 1)

1. =1,
2: while j < p.node[l].numEntries do

3:  if p.nodell][j].state # consistent then
4: prevPeer = p.node[l][j — 1].peer
5: newPeer =

succ(prevPeer.node[l — 1][d — 1].peer)
6: if p.nodell][j].state == coverage then
7 INSERT (p.nodell],j,newPeer)

p.node[l].numEntries + +(max 2d)

8: else
9: REPLACE(p.nodell],j,newPeer)
10: end if
11: p.node[l][j + 1].state =

CheckCovSep(p.node[l][4], p.-node[l][j + 1])

12:  end if
13:  if COVERS(p.node[l][j], p.value) then
14: p.node[l].numEntries = j + 1
15:  end if j4++
16: end while
17: while - COVERS(p.nodell][j — 1], p.value)

Aj<ddo
18:  prevPeer = p.node[l][j — 1].peer
19:  newPeer =

succ(prevPeer.node[l — 1][d — 1].peer)

20: INSERT(p.nodell],j,newPeer)
21: j++
22: end while
23: if COVERS(p.node[l][j — 1], p.value) then
24:  return true
25: else
26:  return false
27: end if

CovSep(). If any node entry is inconsistent with respect
to either of the above two properties, its state is set to ei-
ther coverage or separation. The Ping Process also checks
to see whether a peer has been deleted/failed (line 4), and
if so, it removes the corresponding entry from the P-tree
node (line 5); function Remove() removes the j* entry and
decrements p.node[l].numEntries. Note that the Ping Pro-
cess does not repair any inconsistencies — it merely detects
them. Detected inconsistencies are repaired by the Stabi-
lization Process.

4.6 The Stabilization Process

The Stabilization Process is the key to maintaining the
consistency of P-trees. A separate Stabilization Process runs
independently at each peer, and it repairs any inconsisten-
cies detected by the Ping Process. The actual algorithm for
the Stabilization Process is remarkably simple, nevertheless
it guarantees that the P-tree structure eventually becomes
fully consistent after any pattern of concurrent insertions

and deletions.

Let us give first a high-level overview of the Stabilization
Process. At each peer p, the Stabilization Process wakes up
periodically and repairs the tree level by level, from bottom
to top, within each level starting at entry 0; the successor-
maintenance algorithm from the literature ensuring that the
successor-pointer at the lowest level will be corrected [27].
This bottom-to-top, left-to-right repair of the tree ensures
local consistency: the repair of any entry can rely only on
entries that have been repaired during the current period of
the Stabilization Process.

Let us now consider the outer loop of the algorithm shown
in Algorithm 3. The algorithm loops from the lowest level to
the top-most level of the P-tree until the root level is reached
(as indicated by the boolean variable root). Since the height
of the P-tree data structure could actually change, we up-
date the height (p.numLevels) at the end of the function.

Algorithm 4 describes the Stabilization Process within
each level of the P-tree data structure at a node. The first
loop from lines 2 to 16 repairs existing entries in the P-tree.
For each entry p.node[l|[j], it checks whether p.nodell][j] is
consistent. If not, then either coverage or separation with
respect to the previous entry prevPeer (line 4) is violated,
and we need to repair p.nodell][j]. We repair p.node[l][j] by
either inserting a new entry if coverage is violated (line 7),
or by replacing the current entry (line 9) in case separation
is violated. In both cases, we make a conservative decision:
we pick as new entry the closest peer to prevPeer that still
satisfies the separation and coverage properties. By the def-
initions in Section 3.2, this is precisely the peer newPeer =
succ(prevPeer.node[l — 1][d — 1].peer), which can be deter-
mined using just two messages — one to prevPeer, and an-
other message to prevPeer.node[l — 1][d — 1].peer. (We can
also reduce this overhead to one message by caching relevant
entries). Note that we could set newPeer to any peer which
satisfies the coverage and separation. After the adjustments
in lines 7 or 9, the current entry is now consistent.

After repairing the current entry p.nodell][j], we now have
to check whether the pair (p.node[l][j], p.-node[l][j + 1]) sat-
isfies coverage and separation, which happens through func-
tion CheckCovSep in line 11. Line 13 contains a sanity
check: If the current entry already wraps around the tree,
i.e., its subtree covers the value p.value, then this level is
the root level, and we can stop at the current entry (line
14).

The loop in lines 17 to 22 makes sure that p.node[l] has at
least d entries (unless again its subtree covers pred(p) and
thus this level is the root level — this is checked by the call
to COVERS in line 17) by filling p.node[l] up to d entries.
Lines 23 to 27 returns whether this level is the root of the
tree.

The following lemma states that the Stabilization Process
eventually returns a P-tree to a fully consistent state after
an arbitrary sequence of concurrent insertions and deletions.

Lemma 5: (Eventual Consistency) Given that no
peers enter or leave the system after time ¢, there is a time
to such that after time ¢ + to the P-tree data structure is
consistent.

Let us sketch the main argument behind the proof. The
key intuition is that the stabilization process works bottom-
up from the lowest level to the highest level (see Algo-
rithm 3), and within each level, it operates on entries in
left to right order (see Algorithm 4). Also, when the stabi-



lization process operates on entry j at level [, it only depends
on entries that (a) are at levels [ — 1 or lower, or (b) are at
level I but with entry positions ¢ < j (line 4 in Algorithm 4).
Thus, we can prove by induction first on the level, and then
on the entry position that the P-tree will eventually become
consistent.

4.7 Example of Peer Failure/Deletion

We now illustrate the working of the P-tree algorithms
described in Section 4 by using an example where a peer
fails (or is voluntarily deleted - these two cases are handled
in the same way in P-trees). Peer insertions are handled in
an analogous manner, but we do not include an example of
insertions due to space limitations.

In the case of peer failure, we show how the Ping Process
and the Stabilization Process cooperate to fix the inconsis-
tencies resulting from the failure. The algorithms described
in Section 4 are designed to work asynchronously at each
peer, and can handle concurrent insertions (and deletions).
However, for ease of exposition in the examples, we assume
that the Ping Process and the Stabilization Process run syn-
chronously at the different peers.

Consider the initial consistent P-tree shown in Figure 4.
Let us now assume that ps (with index value 23) fails, and
thus has to be removed from the system. When the Ping
Process is run at level 1 at each peer, it detects the en-
tries that point to ps4 and deletes them from the correspond-
ing node (lines 4-5 in Algorithm 2). In Figure 4, the entry
(23, p4) is deleted from the level 1 nodes of peers p1, p2, and
ps. All entries are still marked consistent because the cov-
erage and separation properties are satisfied (in the figures,
an entry is depicted as consistent if there is no * next to the
entry, and an entry is not consistent if there is a * next to
the entry). The resulting P-tree is shown in Figure 7.

When the Stabilization Process is run at the level 1 node
of each peer, all entries are marked consistent, and hence
no action needs to be taken. Now assume that the Ping
Process is run at the level 2 node of each peer. The Ping
Process does not detect any inconsistencies in most peers,
except for the peers ps and ps. In ps, the Ping Process
removes the entry (23, ps) because ps no longer exists in the
system (lines 4-5 in Algorithm 2). The Ping Process then
checks to see whether coverage or separation is violated for
the entry (30, ps), which is next to the deleted entry (line
7). Since both properties are satisfied, the entry is marked
as consistent. In p3, the Ping Process marks the entry
(29, ps) as separation because the sub-trees rooted at the
entries (13,p3) and (29, p5) overlap too much. This state of
the P-tree is shown in Figure 8.

When the Stabilization Process runs at the level 2 node at
each peer, all entries are consistent except for (29, ps) in
ps3. Since the state of the entry (29, ps) is set to separation,
it is replaced with a new entry that satisfies separation (line
9 in Algorithm 4). Since the replacement of the entry does
not cause the next entry (42, ps) to become inconsistent (line
11), the Stabilization Process terminates. The final consis-
tent P-tree without ps is shown in figure 9.

4.8 Implementation Issues

Since the Ping Process and the Stabilization Process test
for coverage and separation frequently, we briefly discuss
some optimizations to make these checks more efficient. The
separation property is easy to check by sending a single mes-
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Figure 9: Peer Failure - Step 3



sage to p’ = p.node[l][j — 1].peer, and asking for p’.node[l —
1][d].value. Checking the coverage property is more diffi-
cult, and requires one to compute the reach of a node (Sec-
tion 3.3.2), which could require O(logaN) steps. To avoid
this, we store an additional entry at the end of each node
of a P-tree, called the edge entry. This entry is not used
during search, but estimates the reach of the node, and can
be efficiently maintained just like a regular entry.

5. EXPERIMENTAL EVALUATION

We now evaluate the performance of P-trees using both a
simulation study and a real distributed implementation. In
the simulation, our primary performance metric is the mes-
sage cost, which is the total number of messages exchanged
between peers for a given operation. A secondary metric is
the space requirement for the index structure at each peer.
In our preliminary experiments using a small distributed im-
plementation, we use the elapsed time for an operation as
the primary performance metric. For the simulation study,
we assume that there is a single data item stored in each
peer, since we focus on the number of messages exchanged
between peers. In our real implementation, we handle multi-
ple items per peer by mapping more than one “virtual peer”
(Section 2.3) to the same physical peer.

5.1 Experimental Setup

We built a peer-to-peer simulator to evaluate the perfor-
mance of P-tree over large-scale networks. The simulator
was written in Java JDK 1.4, and all experiments were run
on a cluster of workstations, each of which has 1GB of main
memory and over 15GB of disk space.

In the simulator, each peer is associated with a key value
and a unique address. The peer with address 0 is used as
the reference peer, and any peer that wishes to join the sys-
tem will contact this peer. We simulate the functionality of
the Ping Process by invalidating/deleting necessary entries
before the Stabilization Process is called.

The parameters that we vary in our experiments are shown
in Table 1. NumPeers is the number of peers in the system.
Order is the order of the P-tree, and FillFactor is the fill
factor of the P-tree, which is defined similar to the fill factor
of a B4-tree. SPTimePeriod is the number of operations
after which the Stabilization Process is run (on all peers at
all required levels). IDRatio is the ratio of insert to delete
operations in the workload. InsertionPattern specifies the
skew in the data values inserted into the system. If Inser-
tionPattern is 0, values are inserted in descending order, and
if it is 1, values are inserted uniformly at random. In gen-
eral, if InsertionPattern is ip, it means that all insertions
are localized within a fraction ip of the P2P network. In
the systems we also have deletions, and we set the deletion
pattern to be the same with the insertion pattern.

For each set of experiments, we vary one parameter and
we use the default values for the rest. Since the main com-
ponent in the cost of range queries is the cost of finding the
data item with the smallest qualifying value (the rest of the
values are retrieved by traversing the leaf nodes), we only
measure the cost of equality searches. We calculate the cost
of a search operation by averaging the cost of performing
a search for a random value starting from every peer. We
calculate the insertion/deletion message cost by averaging
over 100 runs of the Stabilization Process.

Parameter Range Default
NumPeers 1,000 — 250, 000 100, 000
Order 2—-16 4

FillFactor 5—-7 [Order x 1.5
SPTimePeriod 1—700 25
IDRatio 0.001 — 1000 1
InsertionPattern 0-1 1(random)

Table 1: Parameters

5.2 Experimental Results

Varying Number of Peers Figure 10 shows the message
cost for search and insertion/deletion operations, when the
number of peers is varied. The right side of the y-axis con-
tains the scale for search operations, and the left side con-
tains the scale for insertion/deletion operations. The search
message cost increases logarithmically with the number of
peers (note the log scale on the x-axis). The logarithmic per-
formance is to be expected because the height of the P-tree
increases logarithmically with the number of peers. The fig-
ure also shows that the the message cost for insertions and
deletions is a small fraction of the total number of peers in
the system. This implies that the effects of insertions and
deletions are highly localized, and do not spread to a large
part of the P2P system. In particular, the message cost for
insertions and deletions also increases roughly logarithmi-
cally with the number of peers.

Varying Order and Fill Factor Figure 11 shows the effect
of varying the order of the P-tree and Figure 12 shows the
effect of varying the fill factor of a node. In both cases, the
search cost decreases with increasing order or increasing fill
factor (as in B4-trees) because each subtree is wider, which
in turn reduces the height of the entire tree. The cost for
insertions/deletions, on the other hand, increases. The cost
increases because each peer has a larger number of entries
(note that the number of entries per node is bounded by
2d - logaN, which is strictly increasing for d > 2). Thus
the associated cost of maintaining the consistency of these
entries in the presence of peer insertions/deletions increases.
The implication of this result is that P-trees having very high
orders are not likely to be very practical. This is in contrast
to B+-trees, where higher orders reduce both search and
insertion/deletion cost.

Varying Stabilization Process Frequency Figure 13
shows the effect of varying the frequency at which the Stabi-
lization Process is invoked. When the Stabilization Process
is called relatively infrequently, the search cost increases be-
cause large parts of the trees are inconsistent. However, the
cost per insertion/deletion decreases because the overhead
of calling the Stabilization Process is amortized over many
insertions and deletions. This illustrates a clear tradeoff
in deciding the frequency of the Stabilization Process (and
similarly the Ping Process) - frequent invocations of the Sta-
bilization Process will decrease search cost, but will increase
the overhead of maintaining the P-tree structure in the face
of multiple insertions/deletions.

Varying Insertions/Deletions Ratio Figure 14 shows
the result of varying the ratio of insertion operations and
deletion operations. We observe that the cost per operation
is higher when there are more insertions. This is attributable
to the fact that we run our experiments after building a tree
of 100,000 peers. Since a growing tree is likely to have a high



8 700

~

350 - u 800
Insertion/Deletion ——
Search -

Insertion/Deletion Cost
o

Search Cost

Insertion/Deletion Cost

IS

100

50

~

Insertion/Delétion ——

Insertion/Deletion ——
Search - Searcl

h o

7 600

E

500

@

400

IS

Insertion/Deletion Cost

0 L L 0
1000 10000 100000 250000
Number of Peers

Figure 10: Number of peers

plot

350

Figure 11: Order plot

350

200 300

250

200 200

150 150

Insertion/Deletion Cost

100

Insertion/Deletion Cost

=)
Search Cost

100 44

50 12 50

250 ’,/

4y g
8 o
5} 300 32
< 5
39 3
g g
& 200 Y]
2
100 1
1
0 o 0
12 14 16 5 55 6 6.5 7
Fill Factor
Figure 12: Fill factor plot
7 700 7
Insertion/Deletion —— Insertion —+—
Search =--owe-e Deletion ===
6 600 Search 6
e
5 7 500 5
S
§
4 —‘ ; 400 4 .
5 i
Q o 8
38 £ 300 39
H 5 r g
Py £ 200 | 2®
1 100 1
] 0

0
0 0
1 2 4 8 16 32 64 128 256 512 0001 001 01

P-tree Stabilization Process Time Period

Figure 13: SP frequency plot

fill factor, there is a higher likelihood of an overflow due to
an insertion, as opposed to an underflow due to a deletion.
When we ran experiments on a shrinking tree (not shown),
deletions had a higher message cost.

Varying Insertion/Deletion Patterns Figure 15 shows
the effect of varying the skew of the values inserted and
deleted (recall that O corresponds to highly skewed distri-
bution, while 1 corresponds to a uniform distribution). It is
worth noting that even in a highly skewed distribution, the
performance of P-trees degrades by less than a factor of two.
This behavior is attributable to the fact that the P-tree dy-
namically balances its sub-trees, thereby spreading out any
hotspots.

Space Requirements Our experiments showed that the
number of entries stored at each peer is at most 2d - loga N,
where d is the order of the P-tree and N is the number of
data items in the system.

5.3 Results from a Real Implementation

We now present some preliminary results from a real dis-
tributed implementation of P-trees. Our implementation
was done using C#, and we implemented the full function-
ality of P-trees, including the Ping and Stabilization algo-
rithms. Our experiments were done on six 2.8GHz Pentium
IV PCs connected via a LAN; each PC had 1GB of RAM
and 40GB of disk space. We varied the number of ”virtual
peers” from 20 to 30. We mapped 5 virtual peers to each of
the 4-6 physical peers. Each virtual peer had a unique data
value between 1 and 30. The virtual peers communicated
using remote-procedure calls (RPCs), although the RPCs
between two virtual peers mapped to the same physical peer
was implemented as a local procedure call by the C# imple-
mentation. We set up the Ping process and the Stabilization
process to run once per second at each virtual peer. We used
the elapsed (wall-clock) time as our performance metric, and
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plot
Real (Virtual) Peers | 4 (20) | 5 (25) | 6 (30)
Search (stable) 0.044s | 0.043s | 0.043s
Search (inconsistent) | 3.085s | 2.976s | 2.796s
Stabilization 13.25s 19s 17.25s

Table 2: Experimental Results

each result was averaged over 5 independent runs.

The experimental results are shown in Table 2. As shown,
the average search time for a single data item in a fully con-
sistent P-tree is about 0.044s, for 20 to 30 virtual peers. The
average search time with a failure of 25% of the virtual peers
(uniformly distributed in the value space) is also relatively
stable at about 3s. The time for the P-tree to stabilize to a
fully consistent state after virtual peer failures varies from
13-19s. The search and stabilize times are of the order of
seconds because we run the Ping and Stabilization process
only once per second.

6. RELATED WORK

Chord [27], Pastry [25], Tapestry [31] and CAN [24] imple-
ment distributed hash tables to provide efficient lookup of a
given key value. Since a hash function destroys the ordering
in the key value space, these structures cannot process range
queries efficiently. Approaches to the lookup problem based
on prefix matching/tries [8, 2, 25] cannot be used to solve
the range query problem for arbitrary numerical attributes
such as floating point numbers. Other approaches to the
lookup problem include [9, 30, 22]. Techniques for efficient
keyword search are presented in [29, 6, 23]. However, none
of these systems support range queries.

There has been recent work on P2P data management is-
sues like schema mediation [4, 26, 15], query processing [28],
and the evaluation of complex queries such as joins [12, 26].



However, none of these approaches address the issue of sup-
porting range queries efficiently.

There has been some work on developing distributed in-
dex structures [19, 17, 13, 20]. The work on distributed
B+-trees [17] is perhaps the closest to our work. How-
ever, most of these techniques maintain consistency among
the distributed replicas by using a primary copy, which cre-
ates both scalability and availability problems when dealing
with thousands of peers. In contrast, the P-tree data struc-
ture is designed to be resilient to extended failures of arbi-
trary peers (see also Section 3.2.1). The dPi-tree [21] and
DRT [18] maintain replicas lazily. However, these schemes
are not designed for peers that leave the system, which
makes it inadequate in a P2P environment.

Gupta et al [11] present a technique for computing range
queries in P2P systems using order-preserving hash func-
tions. However, since the hash function scrambles the or-
dering in the value space, their system can only provide ap-
proximate answers to range queries (as opposed to the exact
answers provided by P-trees). Aspnes et al. propose Skip
graphs [3], a randomized structure based on skip lists, which
supports range queries. However, unlike P-trees, they only
provide probabilistic guarantees even when the index is fully
consistent. Finally, Daskos et al. [1] present another scheme
for answering range queries, but the performance of their
system depends on certain heuristics for insertions. Their
proposed heuristics do not offer any performance guaran-
tees and thus, unlike P-trees, their search performance can
be linear in the worst case even after their index becomes
fully consistent.

7. CONCLUSION

We have proposed P-trees as a distributed and fault-tolerant

index structure for P2P networks. The P-tree is well suited
for applications such as resource disovery for web services
and the grid because it extends the capability of existing
P2P systems by supporting range queries in addition to
equality queries. Results from our simulation study and real
implementation show that P-trees support the basic opera-
tions of search, insertion and deletion efficiently with the av-
erage cost per operation being approximately logarithmic in
the number of peers in the system. We believe that P-trees
are just the first step towards building a fully functional P2P
database system. There are many interesting open issues,
including efficient support for multiple tuples per peer, com-
plex queries (such as joins), approximate query results, data
replication and exploiting physical proximity information.
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