
On Compromise Strategies for Action Selection with Proscriptive goals

Frederick Crabbe
U.S. Naval Academy

Computer Science Department
572M Holloway Rd, Stop 9F

Annapolis, MD 21402
crabbe@usna.edu

Abstract

Among many properties suggested for action selection
mechanisms, one prominent one is the ability to select
compromise actions, i.e. actions that are not the best
to satisfy any active goal in isolation, but rather com-
promise between the multiple goals. This paper per-
forms an analysis of compromise actions in situations
where the agent has one proscriptive goal. It concludes
that optimal compromise behavior looks quite different
from what was expected, and, while optimal compro-
mise actions are beneficial to an agent, the benefit is
often small compared to greedy algorithms. It goes on
to suggest that much of the discussion about compro-
mise behavior is the result of an equivocation on its
definition, and it proposes a new compromise behavior
hypothesis.

1 Introduction
Traditional Artificial Intelligence planning systems use search in
order to fully characterize the space of actions a robotic agent can
select in a given situation. The agent considers the outcomes of
possible actions into the future until it finds sequences of actions
that achieve its goals. One feature of this approach is that given
enough time, a planning system can determine the optimal action
sequence for the agent. Of course, the issue of time is a funda-
mental problem for these planning systems: the agent may not
have at its disposal the time needed in order to discover the opti-
mal actions—in fact, often the amount of time required exceeds
the age of the universe.

Behavior-based approaches to robotics and agents in general
have been introduced to address these sorts of problems[Brooks,
1986; Arkin, 1998]. These distributed reactive-style approaches
are designed to generate “good enough” actions in a very small
amount of time. Without optimality, there arises the important
question of exactly what “good enough” means. In his now clas-
sic Ph.D. thesis, Tyrrell introduced a list of fourteen requirements
for Action Selection Mechanisms. Of these, number twelve was
“Compromise Candidates: the need to be able to choose ac-
tions that, while not the best choice for any one sub-problem
alone, are best when all sub-problems are considered simulta-
neously.” [Tyrrell, 1993, p. 174] Tyrrell’s list has had signif-
icant impact on the Action Selection field[Humphrys, 1996;
Decugis and Ferber, 1998; Bryson, 2000; Girardet al., 2002,
e.g.], and a number of researchers have developed systems to
meet the criteria he set out[Werner, 1994; Blumberg, 1994;

Crabbe and Dyer, 1999; Avila-Garcia and Canamero, 2004, e.g.].
Meanwhile biologists and ethologists have noted apparent com-
promise among animals in several scenarios.

The ability to consider compromise actions in an uncertain
world makes great intuitive sense. When multiple goals inter-
act, solving each optimally is not always optimal for the overall
system. Yet, recent work has generated empirical results that
seem to contradict the claim that the ability to consider compro-
mise candidates is necessary[Joneset al., 1999; Bryson, 2000;
Crabbe, 2004]. Despite this, there have been few in-depth anal-
yses of the nature of compromise actions and their effect on the
overall success of an agent. This paper presents an extension of
the work by Hutchinson[1999] and Crabbe[2004] to investigate
the nature of compromise actions in various environmental con-
ditions, concluding that: optimal compromise behavior is quali-
tatively different from what might be expected; optimal compro-
mise behavior provides less benefit than expected in the scenarios
tested; and the apparent disagreement about the utility of com-
promise behavior might possibly arise from an equivocation on
its definition.

2 Problem Formulation

The action selection problem we will discuss in this paper de-
pends on the types of actions the agent can select, the types of
goals the agent pursues, and the formal representation of the
problem.

2.1 Actions

When designing an action selection system, the character of
the “actions” selected by the agent affect the behavior exhib-
ited. For instance, there is a clear difference between an agent
selecting the actioncontract left quadricep 3 cm. and the ac-
tion go to the refrigerator. The distinction is based on the
level of specificity given by the action; the former is as spe-
cific as possible, while the latter leaves much room for interpre-
tation on how it is to be accomplished. In this paper we will
define our domain to be that of navigation of a mobile agent,
similar to several authors’ simulated domains[Maes, 1990;
Tyrrell, 1993] or navigating mobile robots[Chosetet al., 2005].
The space will be continuous, but time will be discrete, such that
the action at each time step is defined as a movement 1 distance
unit at any angle. The importance of this choice of the definition
of “action” will be discussed in Section 6.



2.2 Goals
Tyrrell famously defined compromise as follows: “acompromise
candidate, which might be beneficial to two or more systems to
an intermediate degree, may be preferable to any of the candi-
dates which are most beneficial for one system alone.”[1993, p.
170] The problem of compromise in action selection has multiple
guises. One fundamental distinction pivots on the nature of the
involved goals: are they prescriptive or proscriptive? Prescrip-
tive goals encourage an agent to take some action or sequence of
actions in order to be satisfied. These goals are typically satisfied
by a final consumatory act. Proscriptive goals encourage an agent
to not perform certain actions in certain situations. These goals
are typically not satisfied by a particular action, but can be said
to have been satisfied over a period of time if offending actions
are not performed. The nature of a possible compromise scenario
changes depending on whether there are two prescriptive goals or
one prescriptive and one proscriptive goal.

Two Prescriptive Goals
In a two-prescriptive-goal case, an agent has goals to be co-
located with one of two target locations in the environment.
These could be, for instance, the locations of food, water, poten-
tial mates, or shelter. At any moment either or both of the targets
can disappear from the environment. The agent must select an ac-
tion that maximizes its chances of co-locating with a target before
it disappears. This model is drawn from several scenarios in biol-
ogy. For example, frogs or cricket males sometimes advertise for
mates by emitting calls. The males may disappear with respect to
the female through a cessation of signaling. This can occur either
due to the actions of predators, the arrival of a competing female,
or for internal reasons such as energy conservation. Another sce-
nario in biology is that of a hunter such as a cat stalking prey such
as birds in a flock, where an individual bird can fly at any moment
[Hutchinson, 1999]. Several action selection mechanisms, such
as Werner[1994] and Montes-Gonzales et al.[2000] have been
specifically designed to exhibit this sort of compromise. Further,
biologists and ethologists have advocated in favor of the prescrip-
tive version for some time[Morris et al., 1978; Lorenz, 1981;
Latimer and Sippel, 1987; Baileyet al., 1990].

Crabbe[2004] gave strong evidence that while this sort of be-
havior is seen in nature, it confers little absolute advantage to
the agent. In particular: the optimal compromise strategy per-
formed only slightly better than the best non-compromise (or
greedy) strategy and all other known compromise strategies per-
form worse than maximum expected utility. They conclude that
“animals that exhibit apparent compromise [in the 2 prescriptive
goal case] are either using some unknown strategy or are doing
so for some other reason.”[Crabbe, 2004] This paper discusses
the implications and a possible explanation of Crabbe’s result in
greater detail in Section 6 below.

One Prescriptive, One Proscriptive Goal
Although the two-prescriptive-goal scenario has had significant
impact on the action selection community, the more famous of
the two compromise scenarios discussed here is when there is
one prescriptive goal and one proscriptive goal.

“...proscriptive sub-problems such as avoiding hazards
should place a demand on the animal’s actions that it
does not approach the hazard, rather than positively
prescribing any particular action. It is obviously prefer-
able to combine this demand with a preference to head
toward food, if the two don’t clash, rather than to

head diametrically away from the hazard because the
only system being considered is that of avoid hazard”
[Tyrrell, 1993]

As the quote above indicates, the idea that compromise actions
are especially beneficial in the proscriptive goal case is intuitively
appealing. Further, examples of this appear in the ethological lit-
erature. Blue herons will select sub-optimal feeding patches to
avoid predation by hawks in years when the hawk attacks are
frequent[Caldwell, 1986]. Similar behavior has been shown in
sparrows[Grubb and Greenwald, 1982], minnows[Fraser and
Cerri, 1982], pike and sticklebacks[Milinksi, 1986]. At the mo-
tor level, geese and otheranatidaewho are offered food by a
human can sometimes exhibit behavior where the neck muscles
for both a feeding behavior and a recoiling behavior are activated,
causing a trembling in the neck[Lorenz, 1981].

The purpose of this paper is to provide an analysis of the pro-
scriptive goal scenario using the techniques developed by Crabbe
for the prescriptive goal scenario, to determine both the amount
of benefit of compromise actions, as well as under what condi-
tions compromise actions are the most useful.

2.3 Formal Model

To approximate the scenario described in the quote above, we
examine a continuous environment with a targett and a dan-
ger d, corresponding to a resource such as a mate and a preda-
tor respectively. At any time the target can disappear from the
environment (e.g. the prospective mate stops signaling) with a
probability1− pt, and the danger can disappear (e.g. the preda-
tor becomes bored and wanders off) with a probability1 − pd.
That is, at each time step, the target remains in the environment
with probability pt and the danger remains in the environment
with probabilitypd. Also at each time step, there is a probability
pn(d) that the predator willnot strike or pounce on the agent.
This probability is a function of the distance between the agent
and the danger. The experiments in this paper use four different
functions to generate thepn(d). The agent also has a goal level
associated with the target and the danger, (Gt andGd) that can
vary with the quality of the resource and the damage due to the
predator. Notationally,i, j is the distance from some locationi
to some locationj. All distances are measured in the number of
time steps it takes the agent to travel that distance.

3 Analytical Set-up
In order to investigate compromise candidates, we will analyze
the initial configuration using Utility Theory[Howard, 1977].
Utility Theory assigns a set of numerical values (utilities) to
states of the world. These utilities represent the usefulness of
that state to an agent. Expected Utility (EU) is a prediction of the
eventual total utility an agent will receive if it takes a particular
action in a particular state. The Expected Utility (EU) of taking
an actionA in a stateS is the sum of the product of the prob-
ability of each outcome that could occur and the utility of that
outcome:

EU(A|S) =
∑

So∈Outcomes

P (So|A,S)Uh(So) (1)

whereP (So|A,S) is the probability of outcomeSo occurring
given that the agent takes actionA in stateS, andUh(So) is the
historical utility of outcomeSo as defined below.



Assuming the agent is rational, the set of goals to consume ob-
jects will be order isomorphic1 to the set of the agent’s utilities of
having consumed the objects. Therefore, EU calculated with util-
ities is order isomorphic with EU calculated with goals instead.
For our purposes, we will assume that the goals and utilities are
equivalent (U(t) = Gt).

Because a rational agent is expected to select the action with
the largest EU, the historical utility of a state is the utility of the
state plus future utility, or the max of the expected utility of the
actions possible in each state:

Uh(S) = U(S) + max
A∈Actions

EU(A|S). (2)

An agent can calculate EU using multiple actions in the future by
recursively applying equations (1) and (2).

3.1 Optimal Behavior
We analyze compromise by comparing a close approximation
of optimal behavior with several non-optimal but easy to gener-
ate behaviors. We approximate the optimal behavior based on
the dynamic programming technique adapted by Crabbe from
Hutchinson[1999]. This technique overlays a grid of points on
top of the problem space and calculates the maximal expected
utility of each location given optimal future actions. This is done
recursively starting at the target locations and moving outward
until stable values have been generated for all grid points.

The value we are trying to calculate is the expected utility of
acting optimally at some locationλ in a state where the target
and the danger are still in the environment:EU(O|t, d, λ). If θ
is the angle of the optimal move for the agent at locationλ and
λ′ is 1 unit away fromλ in directionθ, then by equations 1 and 2
the expected utility of being atλ is:

EU(O|t, d, λ) =ptpdpn(λ)EU(O|t, d, λ′)+

pt(1− pd)EU(O|t, λ′)+
pd(1− pn(λ))Gd,

(1− pt)pdpn(λ)EU(O|d, λ′) (3)

EU(O|t, λ) =Gtp
λ,t, and, (4)

EU(O|d, λ) =pn(λ′)pdEU(O|d, λ′)+

(1− pn(λ′))Gd. (5)

The total expected utility is the expectation over four possible
situations: both target and danger are still there, but the danger
does not strike; the target remains, but the danger disappears; the
danger remains and strikes the agent; and the target disappears,
the danger remains but the danger does not strike. When only the
target remains, the optimal strategy is to go straight to the target,
as in equation (4). When the target disappears but the danger
remains, the agent must flee to a safe distance from the danger,
as in equation (5). A safe distance is a variable parameter called
the danger radius. Once the agent is outside the danger radius, it
presumes that it is safe from the danger.

Using the above equations, the expected utility of each
grid point in the environment can be calculated provided
EU(O|t, d, λ′) can be accurately determined andθ can be found.
Sinceλ′ is most likely between grid-points, the local EU func-
tion must be interpolated from the expected utility values of the

1“Two totally ordered sets(A,≤) and(B,≤) are order isomorphic
iff there is a bijection fromA to B such that for alla1, a2 ∈ A, a1 ≤ a2

iff f(a1) ≤ f(a2).” [Weisstein, 2001]

Open is a list of grid-points that need to be updated.
Closed table of updated points.
N is the point currently being updated.
VN is the current EU estimate atN .
repeat

Open← enqueue target locations
Closed← ∅
repeat

N ← dequeue fromOpen
whenN /∈ Closed

EU(O|t, d, λ)← interpolatedEU
function fromVN at neighboring points

VN ← max equation 3
Open← enqueue neighbors ofN
Closed← addN

until Open = ∅
until convergence

Figure 1: The dynamic programming algorithm for estimating
the expected utility at all the grid points in the environment.

surrounding grid points. Using the interpolated surfaces for the
local values ofEU(O|t, d, λ), the value ofθ can be determined
by searching for the angle that maximizes the function described
by equation 3. Once the expected utility is determined for a grid
point, its value is then used to calculate the expected utility of
its neighboring grid-points. This process is repeated until values
are collected for all the grid points. Because the estimated util-
ity value can change for a point when the values of its neighbors
change, the values of all the points are repeatedly re-estimated
until the values stabilize. The pseudocode for the algorithm is
given in figure 1.

3.2 Other Action Selection Mechanisms
It is typically computationally prohibitive for an agent to calcu-
late the optimal action using a technique similar to the one de-
scribed in the previous section. Instead, many researchers pro-
pose easy to compute action selection mechanisms that are in-
tended to approximate the optimal behavior[Cannings and Orive,
1975; Fraenkel and Gunn, 1961; Römer, 1993]. In addition to the
optimal strategy described above, we also examine three other
action selection strategies:

• Direct: The agent moves directly to the target, ignoring the
danger. This is a non-compromise strategy that one would
expect to do poorly.

• Max goal: This strategy moves directly to the target unless
the agent is within the danger zone. Within the danger zone,
the agent moves directly away from the danger until it leaves
the danger zone. This strategy zig-zags along the edge of
the danger zone as the agent moves toward the target. Max
Goal is also a greedy strategy that only acts upon one goal
at a time.

• Skirt: This strategy moves directly toward the target unless
such a move would enter the danger zone. In this case, the
agent moves along the edge of the danger zone until it can
resume heading directly to the target. Skirt is also primar-
ily a greedy strategy. Outside the danger radius, the agent
moves straight to the target. Inside the danger radius the
agent moves straight away from the danger. At the edge of



the danger radius the behavior is still optimal for the avoid
danger goal, as any movement not into the danger zone is
equally optimal. With respect to the target goal, the move-
ment is sub-optimal.

The expected utility of each of these mechanisms can be cal-
culated for any particular scenario by using equations 3, 4 and 5,
where the actionθ is the one recommended by the strategy, not
the optimal action.

4 Experiments
The experiments were designed to determine how much better
the optimal strategy is over the other strategies, as well as quali-
tatively examine what sorts of compromise actions are exhibited
by the optimal strategy. In all of the trials, a target was placed
at (50, 90) with aGt = 100 and a danger was placed at(60, 50)
with Gd = −100. In each trial, apt was selected in the range
[0.95; 1), andpd was selected in the range[0.5; 1). Thepn(d)
function was one of four functions, all of with with a danger ra-
dius of 20:

• Linear A:pn(d) = 0.04d + 0.2 whend ≤ 20, 1 otherwise.

• Linear B:pn(d) = 0.005d + .9 whend ≤ 20, 1 otherwise.

• Exponential:pn(d) = d2/400 whend ≤ 20, 1 otherwise.

• Sigmoid:pn(d) = 1/(1 + 1.810−d) everywhere.

Linear A was selected as a baseline strategy where the probabil-
ity of a strike was high near the danger, but low at the edge of
the danger zone. Linear B was selected to make the chance of
a strike low overall, thus increasing the tendency to stay in the
danger zone longer, for more compromise actions. Exponential
has a high probability of a strike for much of the danger zone, but
drops off sharply at the edge, perhaps encouraging compromise
behavior near the edge. Sigmoid should resemble exponential,
but the area with low strike probability is larger, and there is the
possibility of some strike for every location in the environment,
not just inside the danger radius.

Once the scenario was generated, the expected utility for each
of the three non-optimal strategies and the optimal strategy was
calculated for 200 points in the environment.

5 Results
Figure 2 shows the results of the optimal strategy whenpt =
0.995, pd = 0.99, andpn(d) is Linear A. There are two interest-
ing properties to note. First, within the danger zone, there is little
display of compromise action; the agent flees directly away from
the danger at all locations, ignoring the target. Second, there
is compromise action displayed outside the danger zone, to the
lower right. While this makes sense (the agent would want to
take the shortest path around the danger zone) it does not fit into
the common conception of compromise action. In that area of
the environment, the goal to avoid the danger would not be ac-
tive (since the agent is too far away from the danger) and thus
one would expect it to have no effect of the action selected.

Figure 3 shows the optimal strategy whenpt = 0.995, pd =
0.5, pn(d) is Linear A. The main difference is that the compro-
mise action in the lower right is less pronounced. The optimal
strategy is to assume that the danger will disappear by the time
the agent gets there. This property is seen in all the other exper-
iments, i.e., whenpd is high, the agent avoids the danger zone
and exhibits compromise behavior in the lower right region, but
whenpd is low, the agent moves straight to the target.
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Figure 2: Optimal behavior when the target and danger are likely
to stick around (pt = 0.995, pd = 0.99, andpn(d) is Linear A).
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Figure 3: The same scenario as figure 2, but withpd = 0.5. It
shows effect ofpd on behavior outside the danger zone.
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Figure 4: Whenpt = 0.95, pd = 0.5, andpn(d) is Linear A, the
results show some compromise action within the danger zone as
well as without.

Whenpt = 0.95, pd = 0.99, andpn(d) is Linear A, the results
are qualitatively identical to figure 2, but whenpt = 0.95, pd =
0.5, andpn(d) is Linear A, we start to see some serious compro-
mise action (figure 4). The combination of both the urgency to
get to the target with the likelihood that the danger will disappear
leads to more target focused behavior in the danger zone.

When using Linear B, the behavior is identical to Linear A
whenpd is high. Whenpd is low, the low probability of a strike
makes the compromise action more pronounced (figure 5).

With the non-linearpn(d) functions, compromise action is
seen clearly in all cases. Figure 6 showspt = 0.995, pd = 0.99,
andpn(d) is sigmoid. The compromise behavior is evident both
near the center of the danger zone and again near the edges as the
probability of a strike drops gradually from the danger. This is
the same for the exponentialpn(d).

The quantitative results of the optimal strategy compared to
the greedy strategies described above is shown in table 1. The
table shows how the various strategies (optimal, max goal, and
skirt) compare to each other in term of percentage improvement.
The percentages are of the average expected utility for each strat-
egy across all the starting positions and scenarios2 listed. “All”
is across all scenarios and starting positions; “opposite” is across
just the starting positions that are opposite from the target (the
lower right region); “danger zone” is across the starting positions
inside the danger radius; “Linear A” is all positions when the
pn(d) is Linear A; “Linear B”is all positions when thepn(d) is
Linear B; “Exponential” is all positions when thepn(d) is Ex-
ponential”; and “Sigmoid” is all positions when thepn(d) is Sig-
moid”. The direct strategy was predictably poor (less than half as
good as the other strategies across all trials, and 1/6 as good in-
side the danger zone) so we omitted those results from the table.
We see that across all samples, the optimal behavior performs

2A scenario is a single set of values for the parameters in the model.
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Figure 5:pt = 0.95, pd = 0.5, andpn(d) is Linear B.
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Figure 6:pt = 0.995, pd = 0.99, andpn(d) is sigmoid.



optimal over optimal skirt over
scenario max goal over skirt max goal

all 29.6% 0.1% 29.1%
opposite 64.9% 0.2% 63.3%

danger zone 26.2% 0.01% 26.1%
Linear A 40.9% 0.02% 40.8%
Linear B 13.5% 0.1% 13.1%

Exponential 48.6% 0.03% 48.5%
Sigmoid 16.7% 0.2% 15.2%

Table 1: Results comparing optimal compromise behavior to the
greedy strategies.

26% better than max goal, but only 0.1% better than skirt. When
we consider just those locations on the other side of the danger
zone from the target, we see the benefit is greater for optimal over
max goal, but still only slightly so over skirt. This is the same for
when we consider just those locations inside the danger zone, or
we consider just the samples from each of thepn(d) functions.

6 Discussion
In discussing the results above, we will present some new in-
sights into the nature of the compromise problem, develop its
dual nature, propose a new hypothesis and reinterpret the data
from ethology.

6.1 Experimental Results
The biggest surprise in the qualitative results is in the number
of scenarios where there is almost no compromise action at all.
It appears that in stable environments, the priority is to get away
from the danger as soon as possible. Even in a case where the tar-
get is likely to disappear and the danger unlikely to remain more
than a few time steps, with a moderate chance of a strike, the
best thing to do is to flee the danger first (figure 4). In contrast,
the probability of a strike has a larger effect on the qualitative
behavior than we would have suspected, as shown in figures 5
and 6. The pattern of optimal behavior in figure 6 is as we pre-
dicted around the edge of the danger zone, but not at all what
we expected in the center, with the optimal behavior ignoring the
danger entirely. We are exploring possible causes for this.

The quantitative results in table 1 show that compromise ac-
tions in the danger zone (an original reason for proposing them)
provide much less benefit than compromise actions in the area
opposite from the target. On the other hand, the optimal compro-
mise actions are significantly better than the max goal strategy.
This arises from the zig-zag nature of this strategy resulting in
much longer paths to the target. When this zig-zag is removed
(as in the skirt strategy) the optimal strategy is only the slight-
est bit better. Although there appear to be other patterns in the
data with respect to which locations or whichpn(d) functions fa-
vor which strategies, more research need to be done to reach a
conclusion.

6.2 Blending vs. Voting
In the work so far, we have looked at compromise candidates us-
ing the view described in the quotes and examples from ethology
given above. The result is that compromise actions qualitatively
appear to be blends of the actions best for each sub-goal (the best
direction to move is somewhere in-between the directions that
are best for each of the goals). There is an alternative description
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Figure 7: An example scenario where compromise makes sense.

of compromise candidates, also described by Tyrrell, sometimes
called the council-of-ministers analogy. In this perspective, there
are a collection of “ministers” or experts on achieving each of the
agent’s various goals. Each minister votes for courses of action
that it likes, casting, for example, five votes for its favorite action,
four for its second favorite, and so on. The prime minister tallies
all the votes and selects the action with the most votes. In this
configuration, the compromise selected can be radically different
from the non-compromise actions. Imagine an agent at a location
l0 that needs some of resourcea and some of resourceb. There is
a quality source ofa at l1, a location far from a quality source of
b at l2. There is a single low-quality source of botha andb at l3
(figure 7). Assuming that the utility ofa at ln is an, and there is
some cost of movementc (a chance of the resource moving away
or a direct cost such as energy consumed) then the agent should
movel3 whenevera3+b3−c(l0, l3) > a1+b2−c(l0, l1+ l1, l2).
In the council-of-ministers, thea minister would cast some votes
for l1, but also some forl3. Similarly, theb minister would cast
votes votes for bothl2 andl3. The agent might then select mov-
ing l3 as its compromise choice when it is beneficial.

This presents us with an interesting discrepancy: in one model
of compromise selection, drawn from real world examples in
ethology, compromise is a form of action blending that appears to
have little overall benefit to the agent in the prescriptive goal case,
and benefit in a limited sense in the proscriptive goal case. In
the other, largely hypothetical, model, compromise seems much
more granular, results in actions that are qualitatively different
from the non-optimal actions, and appears to have the ability to
confer real advantage. In the literature, this contrast (in terms of
compromise) is unknown, beginning with Tyrrell who used the
two definitions interchangeably.

It is our position that the difference between these two mod-
els of compromise are because of the level at which the action
is defined. Blending compromises take place at the lower levels,
where the outputs are essentially the motor commands for the
agent. Thus changes allow for little variation in the output. Vot-
ing compromises take place at a higher level, where each choice
can result in many varied low-level actions. For purposes of dis-
tinction, we will call low-level actions3 actionsand higher-level
actions4 behaviors5. Thus selecting a different behavior module

3such asmove 1 unit at 2.1 radians
4such asgo to locationl3
5We rely on the behavior-based robotics notion of “behavior” as a

reactive module designed to achieve a particular goal. They are also
commonly referred to asgoals or tasks. Their important property is
higher level of abstraction over actions.



can have wildly different effects at the action level. We believe
this distinction was not made by the early researchers in action
selection because their experimental environments were entirely
discrete and grid-based, thus affording few action options to the
agent. For Tyrrell, there was little difference between compro-
mise actions and compromise behaviors.

We note that the “three-layer architectures” in robotics do ex-
plicitly make this distinction, where higher layers select between
multiple possible behaviors, and then at lower layers, multiple
active behaviors select actions[Gat, 1991; Bonassoet al., 1997].
When and where compromise behavior is included varies from
instance to instance in an ad hoc manner. Many modern hier-
archical action selection mechanisms that explicitly use voting-
base compromise tend to do so at the behavior level only[Pirja-
nianet al., 1998; Pirjanian, 2000; Bryson, 2000].

6.3 The Compromise Behavior Hypothesis
The experiments here and in previous work, with the insights
discussed above, lead us to propose the following Compromise
Behavior Hypothesis:

Compromise at the action level confers less overall
benefit to an agent than does compromise at the behav-
ior level. Compromise behavior is progressively more
useful as one moves upward in the level of abstraction
at which the decision is made, for the following rea-
sons:

1. In simple environments (e.g. two prescriptive
goals), optimal compromise actions are similar to
the possible non-optimal compromise actions as
well as the possible non-compromise actions. As
such, they offer limited benefit. In these environ-
ments there is no possibility of compromise at the
behavior level.

2. In complex environments (e.g. where multiple re-
sources are to be consumed in succession such
as the scenario depicted in figure 7) compro-
mise behavior can be very different from the ac-
tive non-compromise behaviors, endowing it with
the potential to be greatly superior to the non-
compromise.

3. In complex environments, optimal or even very
good non-optimal actions are prohibitively diffi-
cult to calculate.

In the complex environments, optimal compromiseactions
may offer little benefit over actions derived from compromisebe-
haviorsfor the same reason as in 1 above: the optimal action is
too similar to the non-optimal action. For example, in the figure
7 scenario, a behavior that decides to move the agent tol3 can
ignore the locations ofa andb at l3 and just generate an action
to move tol3 in general. This non-optimal behavior-generated
action will be nearly as good as the optimal action generated by
considering the location and qualities of all thea andb, yet the
optimal action will come at an enormous computational cost. We
propose to begin testing this hypothesis with just this scenario.
We predict that the optimal action will be to move toward a loca-
tion betweena andb in l3, but this optimal action will be essen-
tially just as good as a movement to any other part ofl3.

6.4 Ethological Data Reinterpreted
If it is true that compromise actions are less helpful than compro-
mise behavior, why are so many examples drawn from ethology

used to demonstrate compromise actions in animals? It may be
that the interpretation of the animal data has been overzealous.
In each case there are other possibilities to explain the behavior
that do not involve the weighing of compromise actions, or even
involve the animal’s action selection mechanism at all.

For instance, in the two-prescriptive-goal examples with frogs
and crickets following a curved path between two prescriptive
goals, an alternative explanation might be that the multiple tar-
gets are being merged at the perceptual level, with the ear or au-
ditory system averaging the position of the two targets before any
action selection mechanism has an opportunity to consider its op-
tions. In this interpretation the behavior would be an accident of
morphology, not an attempt to maximize the creature’s utility.

Some examples of potential compromise behavior, such as
dogs combining a display of fear with one of anger[Lorenz,
1981], or the goose trembling when torn between a prescriptive
and a proscriptive goal, may be less an example of compromise
behavior, and more a superposition of the two behaviors. This
effect arises from the behaviors not sharing a common final path,
enabling them to both be expressed simultaneously. In the case of
the geese, the resulting behavior is probably one of the least ben-
eficial actions that could be selected, rather than approximating
optimality.

Admittedly, these re-interpretations are speculative, but they
may not be much more speculative than the idea that they are a
result of deliberate consideration of compromise candidates.

7 Conclusions and Future Work
In this paper we have analyzed the properties of action selection
mechanisms in a scenario that has been of interest to both ethol-
ogists and AI researchers in the past. In it we have shown that
optimal compromise actions in a proscriptive goal case are qual-
itatively different from what was predicted. They further afford
little benefit when compared to a minimally compromise-enabled
strategy. We proposed that compromise is not especially useful at
the action level, but is useful at the higher behavior level. Future
work will revolve around testing, validation or refutation of this
Compromise Behavior Hypothesis.
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