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Abstract

Among many properties suggested for action selection
mechanisms, one prominent one is the ability to select
compromise actions, i.e. actions that are not the best
to satisfy any active goal in isolation, but rather com-
promise between the multiple goals. This paper per-
forms an analysis of compromise actions in situations
where the agent has one proscriptive goal. It concludes
that optimal compromise behavior looks quite different
from what was expected, and, while optimal compro-
mise actions are beneficial to an agent, the benefit is
often small compared to greedy algorithms. It goes on
to suggest that much of the discussion about compro-
mise behavior is the result of an equivocation on its
definition, and it proposes a new compromise behavior
hypothesis.

Introduction

Crabbe and Dyer, 1999; Avila-Garcia and Canamero, 2004, e.g.
Meanwhile biologists and ethologists have noted apparent com-
promise among animals in several scenarios.

The ability to consider compromise actions in an uncertain
world makes great intuitive sense. When multiple goals inter-
act, solving each optimally is not always optimal for the overall
system. Yet, recent work has generated empirical results that
seem to contradict the claim that the ability to consider compro-
mise candidates is necessédpneset al, 1999; Bryson, 2000;
Crabbe, 2004 Despite this, there have been few in-depth anal-
yses of the nature of compromise actions and their effect on the
overall success of an agent. This paper presents an extension of
the work by Hutchinsoh1999 and Crabb¢2004 to investigate
the nature of compromise actions in various environmental con-
ditions, concluding that: optimal compromise behavior is quali-
tatively different from what might be expected; optimal compro-
mise behavior provides less benefit than expected in the scenarios
tested; and the apparent disagreement about the utility of com-
promise behavior might possibly arise from an equivocation on
its definition.

Traditional Artificial Intelligence planning systems use search in

order to fully characterize the space of actions a robotic agent can
select in a given situation. The agent considers the outcomes %f
possible actions into the future until it finds sequences of actionS

that achieve its goals. One feature of this approach is that give.ﬂhe action selection problem we will discuss in this paer de-
enough time, a planning system can determine the optimal actio Lnds on the tvpes 0'? actions the agent can select t?]ept es of
sequence for the agent. Of course, the issue of time is a fundg yp J ’ yp

mental problem for these planning systems: the agent may n(gtoals the agent pursues, and the formal representation of the
have at its disposal the time needed in order to discover the optP-rOblem'
mal actions—in fact, often the amount of time required exceeds
the age of the universe. 2.1 Actions

Behavior-based approaches to robotics and agents in general
have been introduced to address these sorts of prolfmsks, When designing an action selection system, the character of
1986; Arkin, 1998. These distributed reactive-style approacheghe “actions” selected by the agent affect the behavior exhib-
are designed to generate “good enough” actions in a very smated. For instance, there is a clear difference between an agent
amount of time. Without optimality, there arises the importantselecting the actiorwontract left quadricep 3 cmand the ac-
guestion of exactly what “good enough” means. In his now clastion go to the refrigerator The distinction is based on the
sic Ph.D. thesis, Tyrrell introduced a list of fourteen requirementsevel of specificity given by the action; the former is as spe-
for Action Selection Mechanisms. Of these, number twelve waslific as possible, while the latter leaves much room for interpre-
“Compromise Candidates: the need to be able to choose atation on how it is to be accomplished. In this paper we will
tions that, while not the best choice for any one sub-problendefine our domain to be that of navigation of a mobile agent,
alone, are best when all sub-problems are considered simultaimilar to several authors’ simulated domaifidaes, 1990;
neously.” [Tyrrell, 1993, p. 174 Tyrrell's list has had signif- Tyrrell, 1993 or navigating mobile robotiChosetet al., 2005.
icant impact on the Action Selection fieldHumphrys, 1996; The space will be continuous, but time will be discrete, such that
Decugis and Ferber, 1998; Bryson, 2000; Giratdal, 2002, the action at each time step is defined as a movement 1 distance
e.gl, and a number of researchers have developed systems tait at any angle. The importance of this choice of the definition
meet the criteria he set olWerner, 1994; Blumberg, 1994; of “action” will be discussed in Section 6.

Problem Formulation



2.2 Goals head diametrically away from the hazard because the

Tyrrell famously defined compromise as follows:¢@ampromise only system being considered is that of avoid hazard”
candidate which might be beneficial to two or more systems to ~ [Tyrrell, 1993

an intermediate degree, may be preferable to any of the candi- A5 the quote above indicates, the idea that compromise actions
dates which are most beneficial for one system alof#993, p.  are especially beneficial in the proscriptive goal case is intuitively
170 The problem of compromise in action selection has multipleappealing. Further, examples of this appear in the ethological lit-
guises. One fundamental distinction pivots on the nature of therature. Blue herons will select sub-optimal feeding patches to
|_nvolved goals: are they prescriptive or proscriptive? Prescripayoid predation by hawks in years when the hawk attacks are
tive goals encourage an agent to take some action or sequencer@fquent[Caldwell, 198¢. Similar behavior has been shown in
actions in order to be satisfied. These goals are typically Sat'Sf'eé’parrows[Grubb and Greenwald, 19B2minnows[Fraser and

by a final consumatory act. Proscriptive goals encourage an age@krri, 1983, pike and sticklebackiMilinksi, 1986]. At the mo-

to not perform certain actions in certain situations. These goalgor |evel, geese and othenatidaewho are offered food by a
are typically not satisfied by a particular action, but can be sai¢yyman can sometimes exhibit behavior where the neck muscles
to have been satisfied over a period of time if offending actiongor hoth a feeding behavior and a recoiling behavior are activated,
are not performed. The nature of a possible compromise scenar@using a trembling in the ne¢korenz, 1981

changes depending on whether there are two prescriptive goals ortpg purpose of this paper is to provide an analysis of the pro-
one prescriptive and one proscriptive goal. scriptive goal scenario using the techniques developed by Crabbe
Two Prescriptive Goals for the prescriptive goal scenario, to determine both the amount

In a two-prescriptive-goal case, an agent has goals to be C@_I benefit of compromise actions, as well as under what condi-
located with one of two target locations in the environmentlONs compromise actions are the most useful.

These could be, for instance, the locations of food, water, poten-

tial mates, or shelter. At any moment either or both of the targetd-3 Formal Model

can disappear from the environment. The agent must selectan ag; approximate the scenario described in the quote above, we
tion that maximizes its chances of co-locating with a target befor@yamine a continuous environment with a targetnd a dan-
it disappears. This model is drawn from several scenarios in bioberd, corresponding to a resource such as a mate and a preda-
ogy. For example, frogs or cricket males sometimes advertise fapr respectively. At any time the target can disappear from the
mates by emitting calls. The males may disappear with respect hyironment (e.g. the prospective mate stops signaling) with a
the female thrpugh a cessation of S|gnallng. This can occur e'th(ifrobabilityl — p;, and the danger can disappear (e.g. the preda-
due to the actions of predators, the arrival of a competing femalgg; hecomes bored and wanders off) with a probability p,.
or for internal reasons such as energy conservation. Another sCgnat is, at each time step, the target remains in the environment
nario in biology is that of a hunter such as a cat stalking prey sucljith probability p; and the danger remains in the environment
as birds in a flock, where an individual bird can fly at any momentyith probability p,.. Also at each time step, there is a probability
[Hutchinson, 1990 Several action selection mechanisms, SUC"})n(d) that the predator wilhot strike or pounce on the agent.
as Werne[1994 and Montes-Gonzales et 42000 have been  This probability is a function of the distance between the agent
specifically designed to exhibit this sort of compromise. Furthergpg the danger. The experiments in this paper use four different
biologists and ethologists have advocated in favor of the prescrigynctions to generate the, (d). The agent also has a goal level
tive version fo'r some t|méMqrr|s et al, 1978; Lorenz, 1981; gssociated with the target and the dangét, 4nd G) that can
Latimer and Sippel, 1987; Bailestal, 1994. vary with the quality of the resource and the damage due to the
Crabbe[2004 gave strong evidence that while this sort of be- predator. Notationallyi, ; is the distance from some location
havior is seen in nature, it confers little absolute advantage tg, some locationj. All distances are measured in the number of

the agent. In particular: the optimal compromise strategy pefjme steps it takes the agent to travel that distance.
formed only slightly better than the best non-compromise (or

greedy) strategy and all other known compromise strategies pef- .
form worse than maximum expected utility. They conclude thalé Analytical Set-up

“animals that exhibit apparent compromise [in the 2 prescriptivan order to investigate compromise candidates, we will analyze
goal case] are either using some unknown strategy or are doiRge injtial configuration using Utility TheoryHoward, 1977.

so for some other reason[C_rabbe, 200]4‘_|'h|s paper discusses ytjlity Theory assigns a set of numerical values (utilities) to
the implications and a possible explanation of Crabbe’s result idtates of the world. These utilities represent the usefulness of
greater detail in Section 6 below. that state to an agent. Expected Utility (EU) is a prediction of the
One Prescriptive, One Proscriptive Goal eventual total utility an agent will receive if it takes a particular

Although the two-prescriptive-goal scenario has had significanCtion in a particular state. The Expected Utility (EU) of taking
impact on the action selection community, the more famous of actionA in a stateS is the sum of the product of the prob-
the two compromise scenarios discussed here is when there 8bility of each outcome that could occur and the utility of that
one prescriptive goal and one proscriptive goal. outcome:

“...proscriptive sub-problems such as avoiding hazards EU(A|S) = Z P(S,|A, S)Ur(S,) (1)
should place a demand on the animal’s actions that it
does not approach the hazard, rather than positively
prescribing any particular action. Itis obviously prefer- where P(S,|4, S) is the probability of outcome,, occurring
able to combine this demand with a preference to head  given that the agent takes actidnin stateS, andU,(S,) is the
toward food, if the two don't clash, rather than to historical utility of outcomeS, as defined below.

SoEOutcomes



Assuming the agent is rational, the set of goals to consume ob-Open is a list of grid-points that need to be updated.
jects will be order isomorphido the set of the agent’s utilities of | Closed table of updated points.
having consumed the objects. Therefore, EU calculated with util- V is the point currently being updated.
ities is order isomorphic with EU calculated with goals instead| V) is the current EU estimate Af.
For our purposes, we will assume that the goals and utilities arerepeat
equivalent U (t) = Gy). Open < engueue target locations
Because a rational agent is expected to select the action wi Closed « ()
the largest EU, the historical utility of a state is the utility of the repeat
state plus future utility, or the max of the expected utility of the N « dequeue fronDpen
actions possible in each state: whenN ¢ Closed
_ EU(OJt,d, \) < interpolatedEU
Un(8) =U(S) + A function fromVy at neighboring point
VN < max equation 3
Open < enqueue neighbors af
Closed «— addN
until Open = 0
r]until convergence

th

)

An agent can calculate EU using multiple actions in the future by
recursively applying equations (1) and (2).

max
€ Actions

BU(A|S).

W

3.1 Optimal Behavior

We analyze compromise by comparing a close approximatio
of optimal behavior with several non-optimal but easy to gener-_ ] ] ] o
ate behaviors. We approximate the optimal behavior based dnigure 1: The dynamic programming algorithm for estimating
the dynamic programming technique adapted by Crabbe frorthe expected utility at all the grid points in the environment.
Hutchinson[1999. This technique overlays a grid of points on
top of the problem space and calculates the maximal expected ., nding grid points. Using the interpolated surfaces for the
utility of each location given optimal future actions. This is done| cal values ofEU (O|t, d, ), the value o can be determined
rec_ursively starting at the target locations and ”.‘0"‘”_9 outwar y searching for the aﬁgie that maximizes the function described
until stable values have been generated for all grid points. y equation 3. Once the expected utility is determined for a grid
The value we are trying to calculate is the expected utility of, ;¢ “its value is then used to calculate the expected utility of
acting optimally at Some location In a state where the target its neighboring grid-points. This process is repeated until values
and the danger are still in the environmeftl/ (O|t,d, \). It 6 5.0 collected for all the grid points. Because the estimated util-
is the angle of the optimal move for the agent at locafiand i\, \a1ue can change for a point when the values of its neighbors
A'is 1 unit away _fr0m>\ |n_d|rect_|o.n9, then by equations 1 and 2 change, the values of all the points are repeatedly re-estimated
the expected utility of being atis: until the values stabilize. The pseudocode for the algorithm is

EU(Olt,d, \) =pipapn (N EU(Olt,d, ')+ given in figure 1.
pe(1 = pa) EU(O[t, N')+
pa(l = pn(N)Ga,

3.2 Other Action Selection Mechanisms
It is typically computationally prohibitive for an agent to calcu-

(1 = pe)papn (M) EU(O|d, X') (3)  late the optimal action using a technique similar to the one de-
N scribed in the previous section. Instead, many researchers pro-
EU(O|t, A) =Gyp™", and, ) pose easy to compute action selection mechanisms that are in-
EU(O|d,\) =pn (N )pa EU(Old, \')+ tended to approximate the optimal beha{®annings and Orive,
(1= pn(X))Ga. (5) 1975 Fraenkel and Gunn, 19619Rer, 1993. In addition to the

optimal strategy described above, we also examine three other
The total expected utility is the expectation over four possibleaction selection strategies:
situations: both target and danger are still there, but the danger
does not strike; the target remains, but the danger disappears; the® 99 4
danger remains and strikes the agent; and the target disappears, 9a2nger. This is a non-compromise strategy that one would
the danger remains but the danger does not strike. When only the expect to do poorly.
target remains, the optimal strategy is to go straight to the target, ¢ Max goal: This strategy moves directly to the target unless
as in equation (4). When the target disappears but the danger the agent is within the danger zone. Within the danger zone,
remains, the agent must flee to a safe distance from the danger, the agent moves directly away from the danger until it leaves
as in equation (5). A safe distance is a variable parameter called the danger zone. This strategy zig-zags along the edge of
the danger radius. Once the agent is outside the danger radius, it the danger zone as the agent moves toward the target. Max
presumes that it is safe from the danger. Goal is also a greedy strategy that only acts upon one goal

Using the above equations, the expected utility of each  atatime.

grid point in the environment can be calculated provided
EU(OJt,d, X') can be accurately determined ahdan be found.
Since )\’ is most likely between grid-points, the local EU func-
tion must be interpolated from the expected utility values of the

Direct: The agent moves directly to the target, ignoring the

e Skirt: This strategy moves directly toward the target unless
such a move would enter the danger zone. In this case, the
agent moves along the edge of the danger zone until it can
resume heading directly to the target. Skirt is also primar-

Two totally ordered set§A, <) and(B, <) are order isomorphic
iff there is a bijection fromA to B such that for alki;, a2 € A, a1 < a2
iff f(a1) < f(az2).”[Weisstein, 200[L

ily a greedy strategy. Outside the danger radius, the agent
moves straight to the target. Inside the danger radius the
agent moves straight away from the danger. At the edge of



the danger radius the behavior is still optimal for the avoid
danger goal, as any movement not into the danger zone is

J002220022200222022002222222200020 2222220222202 22202022.
UALAAAAAAAALLT T LAAL LA S LA AT AL A A A A A NN A
SIAAAALAA AL SIS A S S S
ULS AT EA LA LA LLL LSS LS A A A AL A A A A A s

>
Q
=
(G
g <
S
o @
o 0
c £
®© 1
Ty
2=
10077 c =
TILIAA AL LA A LS L5 ~— YIS sisieied
sy, = e fotots
DILIAA A LA AL A S LS s e
DAATAAA S E S AL o s s s p
. s sssstsssss (@)} Le)
N —— V2 =22
AN YT i s e ©
AN s strtsssien = © \
Wt \ Y easssssaste
Attt ) - N Y e aa i
s & O W\,
[ SOy N\ S
YO i waaarrn :
e £ O R —— )
e Q) NS e
Mﬂunnﬂﬂ//////////r/rrr//frot& W m
TR NN o - .S
A Yo AR R,
IR RN > o kN
AL OO [ [ AN
.. : MR
RARNY AR — < o ﬂﬂﬂu /MMMUUUNNNNN/
NN D> (] R R .
\ . o] : ””” ..
AN AL OO R o R \ R R R
N NN n.la - N RTINS
R e = ” ..
A R R . m \ AN .
AL OO GRS o \ R
AL O OO G G - — \ AR O OO O OO R s
A U OO OO s -+ n \ AT OO OO G
AR TR RO S o N ARAREERHH IR NI
AU R U OO R s u AT O OO OO S
R RNt sttt - O R R e
AENANNNNNNY /// A O 0 AR OO O OO
AR N N O O O Tt — R N e
AR R e a v L e e e . a R R
AT R R R U O R R R R R R R R R A R R N R N R R R R R R R R RS
///”nUnﬂ”nmﬂﬂuﬂﬂﬂ”ﬂmﬂﬂMUMNNNNNN///NN/NNNNN///////////////////////5 N ”””//////////////////////////////// O
T s o =% PN
s I I Im LIS = 8 A s
N S O
”””ﬂ”ZﬂﬂﬂﬂUﬂuﬂﬂﬂﬂﬂﬂﬂ/ﬂ//ﬂ/U/Uﬂﬂ///////////////////////////////4 = A R O R R OO RO S oo
R T T T R o 0 R Y
N A R NNt L By = = = Kex R R R A R R R
|m LOL ,/,//,W/vnuau/mw/ /// /////////////////////////////////////é.|m EOI L © ..w. n @ Pw Iw NN /r/%/ d/tml, N/U////////////anla
[} o 1 = L] - O © _
> 98¢ 2328 o ® Sy 3=EBEESE g s LESLTC L Cg®E oc
o VG - 2Tc8g 2 . S ODE D FOD nd o > nTESTE2CcE0Q =
IS o = cnSaoeos<o O O - ST B8-S c5CE =& o Q2> - 8o QT g5 | Q
o I 583,383 2928 Sog5x36g80s ¢ 350322525558 (5°
- _ ). 5 =
£ 8Sog ETolg2aE 283 L2um3og8z28 E£C WmammmmSMnnwpcm
=] = =@ i) 0 O == [0 S =% = c NS 9 9 o
- a2k 2 &85 £ g = ® 0T >0 SD 05w Lk
5 250 ZoaBRcrEs SEE£E2  25,24,22236 Sg 5480583288 =
0= CCDom £ 5 0 0. ¥ c ©'=S 2 co0 sy - e
[&)] = © < < SR o] = o ¢ = %) [=)) c O O E Q . - WanOa
c 8+ -0 5 & = — < < cogeE e =E Sos=sscE .236 o
= =} ns8=0'S - - © =03 S5 O = o= © = 08 oS S S0
o} T T > ee..ﬁv.tp..ll S s LS =E 00 0= o to =2 L2 NT Qo8B I*¥ e
© Ho=L .m.nluuaaS%rmu’h N_ S V,tOda..hLW%g.m o O . Boga wn...um.wh% s
< o o O me -] &\ o3 0 c — O = = Xem Irgeae Ocnt o
S E23 EL3498g5 VIV $EEoeg85g85 325 wo2eTSoNsggofge
—_ - Y— S
@ B2 LEEB_ S5 T T > S rQueESPS0nE QT E EESCZQLyEgeogs3eEQ
£ 835 25555855 §55E553885923,8 S8 2L TSt ofefsxsa
7] k=l o8 - = — =] o c ~ Qf 0O 5 c'c o =
s £2E S582C50® £ L85 9f2LEERRES ga8 oL2o22855525384
4 = e === > C - = SEopEE=cSO > n = o © = < S8 00350
3] e} = T g @ SIS S = ZEo0ET8 g =ZoC Cco0osS006gacs= Tl
¢ ©F3 °86c°cs5 =T 2% g2ul3,828C84850 SEEc 250l ESBG R
a £c@ SEs=08sg + L F 7 85S0.%,E002280 5152848538283 =
) 88 o .nlstoam.nem S S +95 Cm.mn%u.muo.r.meat w>5 amncofnmmmu
= w s il Eegi cSmclungnNepl 2os N2 0s SZ oo
[CIR7 = 0o+ E o 2 F S —~ o= ko) Q= = c 2 _ s S ® 30— S o=
o C—0o C -« e ~ o 0 .= [ c o O > 0=
= w =0 T 2 c Qo e 3 TS0 80 g5 2 =8 590 E Segac
2T o8 02008x=c895 Sc | =0 -§355085258TE gL 25,8550 0T
E 235 52581298 1 1S Z3BEEE2ERIRSES S5l 8SESE 22243
CTQETEL . N IFJE®T.r—88 <= £0 =g=g¥Y8,0c22 S8 EL = Qe Ges
£E05gLc B TS50 .= T a8 o9 . 8oole—-2  3d800 £ac¢c S020*¥ 7 g o
1 =) CcC na + S (&) ~ = =2 = =3 0 = yhhmen_ + Ouantnygc -
22 252 g ERLOHNE LS g £ ® = O 0EB8=2S5S55ES 58 WS OERPENgETg=SLE
QS O X>X™=% c O c_ Omo U s pSW”VObp .|0..lC02 W9..l ewece po.m
Omn 5EBE E LBECET Yo S O3~ o553 Y%w3cx= 0 EG>SL ol i =
o O © gE 0 E 2 | oS un < m S N OUN o= ®C® — 0 o) n o3 g © .0 SccEgcXn =
>0 %8 = E—_SET 'Y = O 8 gx 80 co@BTB8 el = <29 . S 09 c
=.= = S = O = o c R}
Te S50C emamm.\)__awmu.ammmwnewohsnMYMhed US:ﬂfemmmmoedS o
S5 s28E g 8082 RS S 2EIBOIRNEESSEETEE P 850850 E2835 0SS
o o ] X B > > — w— £ £ x B © [ .|e.|..l = © Q > = =0 ==
TE 2208 W 08ges0r85 3500 5i8£8wuzL2820s @ £ST88EL S85823 57
FS20 LoSTEEGE28 e 0 0 0 2P 0BEYSLS8E0ES 22 0200280002l 59
— = —_ —_— S Y— — M - — "
DTS < FE8ac==225 J2Ecococoaoc 8 WWILSETEL8S8EES6 o€

It

igure 3: The same scenario as figure 2, but with= 0.5.

hows effect op,; on behavior outside the danger zone.

I

[T]E.
S

e
whemy, is high, the agent avoids the danger zone

ie.,

and exhibits compromise behavior in the lower right region, but

strategy is to assume that the danger will disappear by the ti
whenp, is low, the agent moves straight to the target.

the agent gets there. This property is seen in all the other exp

iments
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well as without.

0.5, andp,,(d) is Linear B.

0.95, pg =

Figure 5:p;

=0.95,pqs = 0.99, andp,,(d) is Linear A, the results

are qualitatively identical to figure 2, but whep

Whenp;

0.95, pg =

0.5, andp,,(d) is Linear A, we start to see some serious compro-

mise action (figure 4). The combination of both the urgency to

get to the target with the likelihood that the danger will disappear

leads to more target focused behavior in the danger zone.

When using Linear B, the behavior is identical to Linear A
whenp, is high. Whenp, is low, the low probability of a strike

makes the compromise action more pronounced (figure 5).

With the non-linearp,,(d) functions, compromise action is
seen clearly in all cases. Figure 6 shgws= 0.995, p4
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moid”. The direct strategy was predictably poor (less than half

good as the other strategies across all trials, and 1/6 as good
side the danger zone) so we omitted those results from the table.

Linear B; “Exponential” is all positions when thg,(d) is Ex-
ponential”; and “Sigmoid” is all positions when thg (d) is Sig-
We see that across all samples, the optimal behavior performs

table shows how the various strategies (optimal, max goal, ang
egy across all the starting positions and scenatieged. “All”

skirt) compare to each other in term of percentage improvement;

The percentages are of the average expected utility for each str
just the starting positions that are opposite from the target (

0.995, pg = 0.99, andp,,(d) is sigmoid.

Figure 6:p;

2A scenario is a single set of values for the parameters in the model.



optimal over| optimal | skirt over I I,

scenario max goal | over skirt| max goal |
all 29.6% 0.1% 29.1% 0

opposite 64.9% 0.2% 63.3%
dangerzong  26.2% 0.01% 26.1%
Linear A 40.9% 0.02% 40.8%
Linear B 13.5% 0.1% 13.1%

Exponential 48.6% 0.03% 48.5%
Sigmoid 16.7% 0.2% 15.2%
Table 1: Results comparing optimal compromise behavior to the
greedy strategies.

Figure 7: An example scenario where compromise makes sense.

26% better than max goal, but only 0.1% better than skirt. When ) . . .

we consider just those locations on the other side of the dang&f compromise candidates, also described by Tyrrell, sometimes
zone from the target, we see the benefitis greater for optimal ové&@lled the council-of-ministers analogy. In this perspective, there
max goal, but still only slightly so over skirt. This is the same for &€ a collection of “ministers” or experts on achieving each of the

when we consider just those locations inside the danger zone, 88€Nt's various goals. Each minister votes for courses of action

we consider just the samples from each ofghéd) functions. that it likes, casting, for example, five votes for its favorite action,
four for its second favorite, and so on. The prime minister tallies

6 Discussion all the votes and selects the action with the most votes. In this
configuration, the compromise selected can be radically different
In discussing the results above, we will present some new infrom the non-compromise actions. Imagine an agent at a location
sights into the nature of the compromise problem, develop it$, that needs some of resourcand some of resourde There is
dual nature, propose a new hypothesis and reinterpret the dagaquality source of. atly, a location far from a quality source of
from ethology. b atl,. There is a single low-quality source of battandb at!;
. (figure 7). Assuming that the utility of atl,, is a,,, and there is
6.1 Experimental Results some cost of movement(a chance of the resource moving away
The biggest surprise in the qualitative results is in the numbesr a direct cost such as energy consumed) then the agent should
of scenarios where there is almost no compromise action at allnovel; whenevews +bs —c(lo, I3) > a1 +bs —c(lo, 1 +11, 12).
It appears that in stable environments, the priority is to get away the council-of-ministers, the minister would cast some votes
from the danger as soon as possible. Evenin a case where the tgyr /, | but also some fok;. Similarly, theb minister would cast
get is likely to disappear and the danger unlikely to remain morgotes votes for bott, andl;. The agent might then select mov-
than a few time steps, with a moderate chance of a strike, thigg , as its compromise choice when it is beneficial.
best thing to do is to flee the danger first (figure 4). In contrast, Thjs presents us with an interesting discrepancy: in one model
the probability of a strike has a larger effect on the qualitativest compromise selection, drawn from real world examples in
behavior than we would have suspected, as shown in figures ghology, compromise is a form of action blending that appears to
and 6. The pattern of optimal behavior in figure 6 is as we prenaye little overall benefit to the agent in the prescriptive goal case,
dicted around the edge of the danger zone, but not at all whaing penefit in a limited sense in the proscriptive goal case. In
we expected in the center, with the optimal behavior ignoring thghe other, largely hypothetical, model, compromise seems much
danger entirely. We are exploring possible causes for this. more granular, results in actions that are qualitatively different
_ The quantitative results in table 1 show that compromise actrom the non-optimal actions, and appears to have the ability to
tions in the danger zone (an original reason for proposing theMjonfer real advantage. In the literature, this contrast (in terms of
provide much less benefit than compromise actions in the are&mpromise) is unknown, beginning with Tyrrell who used the
opposite from the target. On the other hand, the optimal compray definitions interchangeably.
mise actions are significantly better than the max goal strategy. | is our position that the difference between these two mod-
This arises from the zig-zag nature of this strategy resulting iys of compromise are because of the level at which the action
much longer paths to the target. When this zig-zag is removefl jefined. Blending compromises take place at the lower levels,
(as in the skirt strategy) the optimal strategy is only the slightyyhere the outputs are essentially the motor commands for the
est bit better. Although there appear to be other patterns in thggent Thus changes allow for litile variation in the output. Vot-
data with respect to which locations or whigh(d) functions fa- ihg compromises take place at a higher level, where each choice
vor which strategies, more research need to be done to reach:gy result in many varied low-level actions. For purposes of dis-
conclusion. tinction, we will call low-level action$actionsand higher-level
6.2 Blending vs. Voting actiong behaviors. Thus selecting a different behavior module

In the work so far, we have looked at compromise candidates Us- 3g;,ch agnove 1 unit at 2.1 radians

ing the view described in the quotes and examples from ethology 45ch agyo to locationis

given above. The result is that compromise actions qualitatively syye rely on the behavior-based robotics notion of “behavior” as a
appear to be blends of the actions best for each sub-goal (the beshctive module designed to achieve a particular goal. They are also
direction to move is somewhere in-between the directions thasommonly referred to agoals or tasks Their important property is
are best for each of the goals). There is an alternative descriptidrigher level of abstraction over actions.




can have wildly different effects at the action level. We believeused to demonstrate compromise actions in animals? It may be
this distinction was not made by the early researchers in actiothat the interpretation of the animal data has been overzealous.
selection because their experimental environments were entirelyp each case there are other possibilities to explain the behavior
discrete and grid-based, thus affording few action options to théhat do not involve the weighing of compromise actions, or even
agent. For Tyrrell, there was little difference between comproinvolve the animal’s action selection mechanism at all.
mise actions and compromise behaviors. For instance, in the two-prescriptive-goal examples with frogs
We note that the “three-layer architectures” in robotics do exand crickets following a curved path between two prescriptive
plicitly make this distinction, where higher layers select betweergoals, an alternative explanation might be that the multiple tar-
multiple possible behaviors, and then at lower layers, multiplegets are being merged at the perceptual level, with the ear or au-
active behaviors select actiofSat, 1991; Bonasset al, 1997.  ditory system averaging the position of the two targets before any
When and where compromise behavior is included varies fronaction selection mechanism has an opportunity to consider its op-
instance to instance in an ad hoc manner. Many modern hietions. In this interpretation the behavior would be an accident of
archical action selection mechanisms that explicitly use votingmorphology, not an attempt to maximize the creature’s utility.
base compromise tend to do so at the behavior level [Ria- Some examples of potential compromise behavior, such as
nianet al, 1998; Pirjanian, 2000; Bryson, 20000 dogij combining a display of fear with one of andeorenz,
. . . 1981, or the goose trembling when torn between a prescriptive
6.3 The Compromise Behavior Hypothesis and a proscrigtive goal, maygbe less an example of Eompr(?mise
The experiments here and in previous work, with the insight$ehavior, and more a superposition of the two behaviors. This
discussed above, lead us to propose the following Compromisgifect arises from the behaviors not sharing a common final path,
Behavior Hypothesis: enabling them to both be expressed simultaneously. In the case of
Compromise at the action level confers less overall the geese, the resulting behavior is probably one of the least ben-
benefit to an agent than does compromise at the behav-  eficial actions that could be selected, rather than approximating
ior level. Compromise behavior is progressively more optimality.
useful as one moves upward in the level of abstraction Admittedly, these re-interpretations are speculative, but they
at which the decision is made, for the following rea- may not be much more speculative than the idea that they are a
sons: result of deliberate consideration of compromise candidates.

1. In simple environments (e.g. two prescriptive

goals), optimal compromise actions are similarto 7 €onclusions and Future Work

the possible non-optimal compromise actions as
well as the possible non-compromise actions. As
such, they offer limited benefit. In these environ-
ments there is no possibility of compromise at the
behavior level.

. In complex environments (e.g. where multiple re-
sources are to be consumed in succession such
as the scenario depicted in figure 7) compro-

In this paper we have analyzed the properties of action selection
mechanisms in a scenario that has been of interest to both ethol-
ogists and Al researchers in the past. In it we have shown that
optimal compromise actions in a proscriptive goal case are qual-
itatively different from what was predicted. They further afford
little benefit when compared to a minimally compromise-enabled
strategy. We proposed that compromise is not especially useful at
the action level, but is useful at the higher behavior level. Future

work will revolve around testing, validation or refutation of this
Compromise Behavior Hypothesis.

mise behavior can be very different from the ac-
tive non-compromise behaviors, endowing it with
the potential to be greatly superior to the non-
compromise.

3. In complex environments, optimal or even very
good non-optimal actions are prohibitively diffi-
cult to calculate.
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haviorsfor the same reason as in 1 above: the optimal action is
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